Evaluasi Kinerja Beton Self-Compacting Concrete (SCC) Mutu Tinggi dengan Substitusi Slag Nikel sebagai Agregat Halus

Authors

  • Fitriyanti Fakultas Teknik Sipil, Universitas Lamappapoleonro, Soppeng, Sulawesi Selatan Author
  • Ismawati Fakultas Teknik Sipil, Universitas Lamappapoleonro, Soppeng, Sulawesi Selatan Author
  • Humairah Annisa Fakultas Teknik Sipil, Universitas Lamappapoleonro, Soppeng, Sulawesi Selatan Author

DOI:

https://doi.org/10.33096/c3g3f509

Keywords:

Limbah Indsutri, Slag Nikel, Beton Mutu Tinggi, Beton SCC

Abstract

Peningkatan kebutuhan infrastruktur global menuntut inovasi material konstruksi yang berkelanjutan. Salah satu material inovatif tersebut adalah Self-Compacting Concrete (SCC), yaitu beton yang mampu mengalir dan memadat tanpa vibrasi. Penelitian ini mengevaluasi karakteristik slag nikel, limbah industri peleburan feronikel, sebagai pengganti agregat halus pada beton SCC mutu tinggi. Slag nikel memiliki sifat fisik mirip pasir serta komposisi kimia yang didominasi SiO₂ dan MgO, sehingga berpotensi meningkatkan performa beton. Tujuan penelitian meliputi penentuan komposisi optimum beton SCC berbahan slag nikel, evaluasi sifat mekanik dan ketahanan korosi, serta identifikasi hubungan antara keduanya pada lingkungan agresif. Hasil penelitian menunjukkan bahwa slag nikel bergradasi No. 1 dan memberikan peningkatan signifikan terhadap kuat tekan pada kadar substitusi optimum, hingga memenuhi kategori beton kinerja tinggi. Beton SCC berbahan slag nikel juga menunjukkan kemampuan mengalir dan mencetak secara mandiri (high fluidity), sehingga meningkatkan efisiensi pekerjaan. Selain meningkatkan performa mekanik dan durability, pemanfaatan slag nikel mendukung konstruksi berkelanjutan melalui pengurangan limbah industri, konservasi sumber daya alam, dan kontribusi terhadap ekonomi sirkular.

References

Ahmad, S. B., Irmawaty, R., Aly, S. H., & Amiruddin, A. (2022). Performance of fly ash concrete with nickel slag fine aggregate in the marine environment. Journal, 8(12), 3803–3814.

Amir, A. (2022). Use of nickel slag waste as coarse aggregate in concrete. Journal, 7(2), 61–68.

Amiruddin, Indrayani, Sukarman, Marpen, R., Permata, I., & Marlena. (2022). The making of self-compacting concrete (SCC) with variations of local sand. Journal, 10(2), 91–98.

Anjani, W. S., & Walujodjati, E. (2022). Pengaruh Korosi Tulangan Terhadap Panjang Penyaluran pada Beton. Jurnal Konstruksi, 20(2), 311–320. https://doi.org/10.33364/konstruksi/v.20-2.1214

Arifin, M. Z., & Kustono, D. (2020). Characteristics of ASTM A36 steel plate corrosion rate due to bending treatment with angle, corrosion media, and corrosion time variations. Journal, 1(1), 21–29.

Astuti, P., et al. (2022). IKLU study. Journal, 8(2), 197–205.

Awainah, N., Sulfiana, Nurhaedah, Jamaluddin, & Aminullah, A. (2024). The role of infrastructure in driving economic growth and improving the quality of life. Journal of Education and Teaching Review, 7(3), 6847–6854.

Irmawaty, R., Akbar, M., Tjaronge, C. M. W., Asad, M., & Ahmad, S. B. (2023). Compressive strength and corrosion behavior of steel bars embedded in concrete produced with ferronickel slag aggregate and fly ash: An experimental study. Innovative Infrastructure Solutions, 8, Article 11621. https://doi.org/10.1007/s41062-023-01162-1

Iswardoyo, J. (2016). Study of steel slag utilization as sabodam building material. Journal of Hydraulic Engineering, 7(2), 131–146.

Jumari, A., Purwanto, A., & Ardiansyah, A. (2006). Study of corrosion rate of concrete reinforcing steel using modified Matsuoka model. Journal, 5(1), 20–27.

Lian, Y., et al. (2021). Mechanical properties of high-strength concrete with a combination of nickel slag and steel slag. Journal, 3(1), 55–62.

Majalis, A. N., Permatasari, N. V., Novitasari, Y., Wicaksono, N., Armin, D., & Pratiwi, R. (2020). Kajian Awal Produksi Fero Sulfat dari Slag Nikel Melalui Proses Pelindian Menggunakan Asam Sulfat. Jurnal Ilmu Lingkungan, 18(1), 31-38. https://doi.org/10.14710/jil.18.1.31-38Marshus, M., Ibrahim, H., Karim, R., & Nide, J. (2019). Controlling the impact of factory waste (slag) in the processing of nickel ore into nickel pig iron (NPI). General Mining Journal, 2(1), 34–38.

Ressa, Y., Mangesa, A. T., Pratama, K., & Redanto, A. (2024). Case study of B3 waste (nickel slag) management in the nickel mining industry in Indonesia. Proceedings, 3, 3–8.

Romadhon, M. I., & Romadhon, E. S. (2023). ANALISIS BETON SELF COMPACTED MENGGUNAKAN SEMEN PCC. JURNAL TEKNIK SIPIL-ARSITEKTUR, 22(1), 103-112. https://doi.org/10.54564/jtsa.v22i1.193

Singh, N., Singh, A., Ankur, N., Kumar, P., & Kumar, M. (2022). Reviewing the properties of recycled concrete aggregates and iron slag in concrete. Construction Materials Journal, 60(August).

Sukman, S., Amir, A. A., Mahmud, M., & Hasrudin, H. (2022). Evaluasi saluran drainase di Lingkungan Desa Tumbudadio Kecamatan Tirawuta Kabupaten Kolaka Timur. JURNAL UNITEK, 15(2), 220–228. https://doi.org/10.52072/unitek.v15i2.450

Sutandi, A., & Wilwin. (2021). Study of risk identification in infrastructure projects in Indonesia. JMTS: Journal of Civil Engineering Partners, 4(1), 295–302.

Tanjung, A., Gonzales, R., Seprianti, A., & Izati, R. (2022). Analysis of nickel slag waste utilization as shotcrete raw material and handling of nickel slurry to reduce the environmental impact. Journal, 6(2), 11–22.

Tampubolon, M., Gultom, R. G., Siagian, L., Lumbangaol, P., & Manurung, C. (2020). Corrosion rate of medium carbon steel due to dipping process in sulfuric acid (H₂SO₄) and hydrochloric acid (HCl) solutions with varying time. Sprocket Journal of Mechanical Engineering, 2(1), 13–21. https://doi.org/10.36655/sproket.v2i1.294

Yanuarini, E., et al. (2022). The effect of nickel slag and fly ash substitution on concrete compressive strength as a wave breaker. Journal, 9(1), 1–8.

Downloads

Published

2025-10-31

Similar Articles

21-30 of 72

You may also start an advanced similarity search for this article.