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Abstract 

Pile foundations are essential in geotechnical engineering, especially when strong soil layers are 

too deep for shallow foundations. Besides supporting vertical loads, they must also resist lateral 

forces from wind and earthquakes. Accurately estimating pile bearing capacity is crucial for 

structural safety and cost efficiency. Conventional methods, such as those using SPT and CPT 

results, are mostly deterministic and often ignore the uncertainty in soil properties—an issue 

especially relevant in tropical regions like Indonesia with highly variable subsurface conditions. 

This study applies a Bayesian probabilistic approach to analyze pile bearing capacity using CPT 

data from Tumbak Bayuh, Bali. Typical soil parameters from literature are used as priors and 

updated with site-specific data. The results indicate that Bayesian inference offers more realistic 

and robust estimates than traditional methods by incorporating uncertainty and allowing continuous 

refinement as new data are added. 

The study also introduces a Bayesian model to assess how sample size affects parameter estimation, 

comparing it with frequentist approaches such as least squares and maximum likelihood. Findings 

highlight the strength of Bayesian updating in capturing uncertainty, offering a systematic and 

adaptive framework for pile analysis—especially beneficial in data-scarce or variable geotechnical 

environments. 
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1. INTRODUCTION 

Pile foundations are one of the essential elements in geotechnical engineering, functioning 

to transfer loads from a structure to soil or rock layers with adequate bearing capacity. 

These foundations are typically used when competent soil strata are located at depths that 

are beyond the reach of shallow foundations. In such conditions, pile foundations become 

the primary option to ensure the stability and safety of structures, especially for high-rise 

buildings, bridges, towers, and other critical infrastructure. 

In addition to supporting vertical loads from the structure’s self-weight, pile foundations 

must also perform reliably under lateral loads induced by environmental factors such as 

wind and earthquakes. Therefore, the design and analysis of pile bearing capacity must be 

conducted with great care to prevent structural failure, which could result in serious public 

safety hazards and significant economic losses. Accurate estimation of pile bearing 

capacity also contributes to cost-efficient construction by avoiding overly conservative or, 

conversely, underdesigned solutions. 
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Over the past few decades, various empirical, semi-empirical, and analytical methods have 

been developed to estimate the bearing capacity of pile foundations. These methods are 

generally based on geotechnical parameters such as soil cohesion, internal friction angle, 

and field test data, including the Standard Penetration Test (SPT) and Cone Penetration 

Test (CPT). However, most of these approaches remain deterministic in nature, assuming 

that soil parameters are known with certainty. In reality, geotechnical parameters often 

exhibit significant variability and uncertainty due to natural heterogeneity and limitations 

in field and laboratory data. 

Uncertainty in geotechnical parameters can lead to substantial deviations between 

predicted and actual field performance. To address this issue, probabilistic approaches have 

been increasingly introduced in geotechnical analysis to account for variability and 

uncertainty. Among these, the Bayesian approach has gained considerable attention for its 

ability to integrate available data with prior knowledge, resulting in parameter estimates 

and output predictions that are more data-driven and realistic (Albert & Hu, 2019; Baecher, 

2017; Basoka et al., 2023, 2024; Bozorgzadeh et al., 2019; Fornacon-Wood et al., 2022; 

Gelman et al., 2021; Kelly & Huang, 2015; Kruschke, 2021; Ueda, 2022; Wakefield, 2013; 

Zaidi et al., 2012). 

Although the Bayesian approach offers advantages in terms of uncertainty quantification 

and dynamic information updating, its application in the analysis of pile bearing capacity 

remains relatively limited. Initial studies have shown promising results, yet further research 

is needed to evaluate its reliability in practical design contexts, particularly under tropical 

soil conditions such as those found in Indonesia, which are characterized by complex and 

highly variable geotechnical properties. 

 

2. METHOD 

a) Soil Parameter 

Soil bearing capacity evaluation is commonly conducted through in-situ tests such as the 

Standard Penetration Test (SPT) and Cone Penetration Test (CPT). These tests provide 

practical and site-specific information about subsurface conditions. However, it is not 

uncommon for the results obtained from such field investigations to differ from the typical 

soil parameter values reported in previous studies or reference literature. Such 

discrepancies may arise due to local variations in soil type, depositional history, weathering 

processes, or testing conditions. 

Table 1. Soil Parameters 

Soil Type 
CPT qc 

Range(MPa) 

Unit 

Weight(kN/m³) 

Cohesion 

(c)(kPa) 

Friction Angle 

(φ)(degrees) 

Soft Clay 0.2 – 1.0 15 – 18 15 – 30 5 – 15 

Stiff Clay 1.0 – 4.0 17 – 20 30 – 100 15 – 25 

Loose Silty 

Sand 
1.0 – 5.0 16 – 19 0 – 5 25 – 30 

Medium 

Dense Sand 
5.0 – 10.0 18 – 20 0 – 5 30 – 35 

Dense Sand 10.0 – 20.0 19 – 21 0 – 5 35 – 40 
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Soil Type 
CPT qc 

Range(MPa) 

Unit 

Weight(kN/m³) 

Cohesion 

(c)(kPa) 

Friction Angle 

(φ)(degrees) 

Gravelly Sand > 20.0 20 – 23 0 – 5 38 – 45 

Organic Clay / 

Peat 
< 0.5 10 – 15 5 – 15 5 – 10 

Silty Clay 0.5 – 2.0 16 – 19 20 – 40 10 – 20 

 

Table 1 presents a compilation of typical geotechnical parameters for various soil types, as 

documented by previous researchers. These values serve as a useful reference, especially 

when site investigation data are limited or when anomalies are observed in field test results. 

While they should not replace site-specific data, these typical parameter ranges can offer 

valuable context and initial estimates for engineering analysis. 

In the context of Bayesian analysis, the typical values shown in Table 1 can serve as prior 

information or baseline assumptions. Bayesian methods rely on the integration of prior 

knowledge with observed data to produce updated (posterior) estimates. By using 

parameter ranges from established literature as priors, and combining them with data 

obtained from SPT or CPT, a more comprehensive and probabilistically sound assessment 

of soil bearing capacity can be achieved. This approach allows for the quantification of 

uncertainty and improves the reliability of geotechnical design, particularly when field data 

are sparse or exhibit high variability. 

Moreover, the use of typical parameter values as priors in Bayesian analysis offers a 

systematic framework for incorporating engineering judgment and accumulated empirical 

knowledge into the design process. This is particularly beneficial in regions with limited 

geotechnical data or where testing conditions may not fully capture subsurface complexity. 

By calibrating these prior estimates with actual site investigation results, engineers can 

reduce the risk of underestimating or overestimating foundation performance. In turn, this 

enhances the robustness of the analysis and supports the development of more reliable and 

cost-effective geotechnical designs. 

b) Pile foundation 

The allowable bearing capacity of a pile foundation based on Cone Penetration Test (CPT) 

results, or sondir, is commonly determined through a combination of end bearing and shaft 

friction components. This method is widely used in geotechnical practice due to its direct 

use of in-situ data, which reflects the actual subsurface conditions with minimal 

disturbance. The empirical formula employed is as follows: 

𝑄 =    (𝑞𝑐 . 𝐴𝑏)/𝐹1  +   (𝐽𝐻𝑃 . 𝑂)/𝐹2 

In this equation: 

𝑞𝑐 represents the cone resistance, obtained from CPT measurements around the base of the 

pile, 𝐴𝑏 is the cross-sectional area of the pile base, 𝐽𝐻𝑃 denotes the total adhesion or skin 

resistance developed along the pile shaft, 𝑂 is the perimeter of the pile shaft, 𝐹1 and 𝐹2 are 

safety factors for the bearing and friction components, typically taken as 3 and 5, 

respectively. 

This approach provides a practical balance between simplicity and reliability. The use of 

separate safety factors for the two resistance mechanisms reflects the inherent variability 

and uncertainty associated with each. End bearing resistance is often more reliable due to 
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concentration of stress at the pile tip, whereas shaft resistance is more sensitive to 

installation method, soil disturbance, and pile-soil interface conditions. 

For bored piles, which are constructed by excavating a hole and then filling it with concrete 

(as opposed to being driven into the ground), the actual load-carrying capacity is generally 

lower than that of driven piles. This reduction is attributed to potential loosening of the soil 

during excavation, lack of compaction around the shaft, and imperfect concrete placement. 

To account for these differences, Craig (1994) recommends the use of reduction factors: 

one-third for end bearing capacity and one-half for shaft friction, relative to driven pile 

values. These factors are empirical but are widely accepted in geotechnical engineering 

practice, particularly in preliminary design stages. 

The application of these empirical relationships must, however, be calibrated with local 

soil behavior and construction practices. In tropical regions like Indonesia, for instance, 

high variability in soil stratigraphy, presence of residual soils, and weathered rock layers 

may necessitate more detailed interpretation of CPT data and possible site-specific 

adjustments to the empirical coefficients or safety factors. 

Furthermore, integration of probabilistic approaches such as the Bayesian method into the 

interpretation of CPT-based capacity estimations can enhance the reliability of the results 

by explicitly accounting for uncertainties in both soil parameters and measurement data. 

This is especially important for critical structures or sites with limited investigation data, 

where deterministic estimates may not adequately represent the range of possible 

performance outcomes. 

c) Frequentist approach 

Frequentist analysis is performed to obtain the shape parameter and scale parameter, which 

are the parameters of the Weibull distribution. The estimation method used in this analysis 

is using the least square method (LSM) and maximum likelihood estimate (MLE), as 

explained by Li et al. (2017). The linear regression method is the Least Squares Method 

(LSM). The slope of a simple linear regression determines the Weibull modulus. Rossi 

(2018) calculates presumptive probability distribution parameters from observable data 

using maximum likelihood estimate (MLE). Maximizing a likelihood function increases 

the probability that observed data matches the expected statistical model. The maximum 

likelihood estimate is where the likelihood function is most significant in the parameter 

space, Weibull parameter analysis employing frequentist inference and statistical software. 

d) Bayesian Approach 

On the other hand, geotechnical engineers are tasked with addressing the uncertainties that 

arise because of the constraints of inadequate knowledge (Baecher, 2017; Contreras et al., 

2018; Phoon et al., 2022). These situations pertain to the probabilities of distinct 

occurrences. As mentioned earlier, the uncertainties are not easily addressed under the 

framework of Frequentist thinking but rather necessitate the use of Bayesian reasoning. 

Bayesian thinking pertains to the processes of judgment and belief. This phenomenon 

results in highly significant deductions even when the available data is limited (Baecher, 

2017; Contreras et al., 2018). 

A probability model is fitted to a collection of data using the Bayesian inference process, 

and the result is summarized by a probability distribution on the model's parameters and 

unobserved values like forecasts for future observations (Albert & Hu, 2019; Gelman et 

al., 2021). The posterior density is obtained by mere conditioning on the known value of 

the data y and applying the fundamental Bayes' rule of conditional probability as Eq. (3) 

below: 
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𝑝(𝜃|𝑦) =
𝑝(𝜃)𝑝(𝑦|𝜃)

𝑝(𝑦)
 (3) 

 

Where 𝑝(𝜃) is the probability of hypothesis 𝜃 being true, despite the data, this is the prior 

probability of 𝜃 or the unconditional probability. The 𝑝(𝑦) is the probability of the data, 

regardless of the hypothesis, this is known evidence. The 𝑝(𝑦|𝜃) is the probability of data 

y given that hypothesis 𝜃 is true known as the likelihood of data y conditional on hypothesis 

𝜃. The 𝑝(𝜃|𝑦) is the probability of hypothesis 𝜃 given the data y, known as the posterior 

probability.  

The utilization of the Bayesian inference model flow chart for statistical processing can be 

seen in Figure 1. Determining the random parameters mu_a and mu_b, which follow a 

normal distribution, is the initial step toward determining the deterministic parameters 𝛼 

and 𝛽. Subsequently, both 𝛼 and 𝛽 are utilized as inputs for the likelihood function, which 

follows the Weibull distribution. Finally, the posterior is computed based on the steps 

mentioned above. Subsequently, the procedure mentioned above was iterated, and the 

specimens were amplified utilizing Markov Chain Monte Carlo (MCMC). The process of 

conducting Bayesian analysis involves the initial establishment of priors, followed by the 

construction of the likelihood form, and ultimately culminating in the posterior 

computation, as delineated in Figure 1. The utilization of Python coding facilitates the 

implementation of the analysis process, which involves an iterative approach utilizing 

MCMC. 

 

Figure 1. Framework of Bayesian inference model. 

e) Hierarchical Bayesian Approach 

Another method that will be used in this analysis is the Bayesian hierarchical approach. 

There are several benefits and advantages associated with the utilization of Hierarchical 

Bayesian modeling. Hierarchical Bayesian Models refer to a category of Bayesian 

statistical models that facilitate the representation and analysis of intricate data structures 

characterized by hierarchical relationships. These models include both individual-level and 

group-level information, facilitating the exchange of information across various levels of 

the hierarchy and resulting in more accurate and robust inferences (Albert & Hu, 2019; 

Bozorgzadeh et al., 2019; Britten et al., 2021; Feng et al., 2021; Gelman et al., 2021; Jiao 
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et al., 2011; Ueda, 2022). Hierarchical Bayesian models are frequently employed across 

diverse sectors, including but not limited to education, sports, medicine, ecology, and 

finance. Hierarchical Bayesian modeling offers a versatile and comprehensible approach 

to expanding basic models of individual particle strength through the utilization of the 

Weibull distribution. 

The hierarchical model is created by combining sub-models, and Bayes' theorem integrates 

the elements and incorporates all uncertainty. Markov Chain Monte Carlo (MCMC) 

techniques have helped develop and use Bayes' theorem, especially in hierarchical models 

(Allenby et al., 2005). Error! Reference source not found. is a flow chart of Bayesian 

hierarchical modeling. It almost resembles the usual Bayesian inference model, only here 

there is an additional hyperparameter s_a (standard deviation for mu_a) b0 (mean for 

mu_a), s_b (standard deviation for mu_b) b0 (mean for mu_b). In the prior data section, it 

is observed using random variables and observation parameters. Then the posterior is 

calculated based on the amount of data and data groups. The proposed model involves the 

analysis of Weibull parameters for each sample group (S, M, L) to gain insight into the 

impact of sample size on the parameters. The obtained results will be compared with 

frequentist inference to evaluate any observed changes.  

 

Figure 2. Framework of Hierarchical Bayesian inference model. 

 

3. RESULTS AND DISCUSSIONS 

a)  CPT Results 

The results of Cone Penetration Test (CPT) conducted at two different locations in the 

Tumbak Bayuh area, Kerobokan, North Kuta District, Badung Regency, Bali are presented 

in Figure 3. These CPT soundings were carried out to evaluate the subsurface soil 

conditions and to identify the depth at which soil layers exhibit sufficient bearing resistance 

to support foundation loads. 
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Figure 3. CPT Results 

 

Based on the CPT profiles, it can be observed that the average depth to a competent soil 

layer—characterized by a significant increase in cone resistance values—ranges between 

4 to 7 meters below the ground surface. This depth range is consistently identified across 

all five test points, indicating a relatively uniform subsurface stratigraphy in the 

investigated area. The soil strata encountered in this interval are predominantly classified 

as silty sand, or pasir kelanauan, based on Soil Behavior Type (SBT) charts interpreted 

from CPT data. This type of soil typically demonstrates moderate to high cone resistance, 

indicating improved strength and stiffness compared to the overlying weaker layers. 

The upper soil layers, generally extending from the surface to depths of 3 to 4 meters, 

consist of softer, more compressible materials such as silty clay or clayey silt, which exhibit 

lower cone resistance values. These upper layers are not suitable for foundation support 

without improvement, due to their low bearing capacity and high compressibility. The 

presence of the denser silty sand layer at greater depths, however, provides a more 

favorable bearing stratum for deep foundations such as piles, or for shallow foundations 

with excavation to a deeper founding level. 

In addition to identifying the depth of competent soil, the CPT data also provide valuable 

insight into the variability of subsurface conditions across the site. Although the general 

trend indicates a relatively consistent profile, minor variations in cone resistance values 

between locations suggest localized differences in soil density, gradation, or moisture 

content. These variations should be carefully considered during foundation design, 

particularly in determining pile length or the required depth of excavation, to ensure 

uniform structural performance and avoid differential settlement. 

Furthermore, while silty sand generally offers better strength properties compared to clay-

rich soils, its engineering behavior may still be sensitive to environmental conditions, such 

as groundwater fluctuations or cyclic loading due to seismic events. Given the site’s 

location in a coastal and seismically active region, these factors must be incorporated into 

the design through rigorous geotechnical assessment. The integration of probabilistic 

analysis—such as Bayesian updating—with the CPT data allows engineers to explicitly 
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account for uncertainties and site variability, providing a more reliable estimate of bearing 

capacity and a safer, more cost-efficient foundation solution. 

b) Bayesian approach 

Based on the analysis conducted, a comparison between the bearing capacity of single pile 

foundations calculated with and without the Bayesian approach is presented in Figure 4. 
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Figure 4. Bearing capacity of pile foundation 

 

As shown in Figure 4, the bearing capacity estimation without using the Bayesian approach 

represents a purely deterministic analysis. This method does not account for prior 

information regarding typical soil strength parameters derived from previous studies. As a 

result, the outcome stands independently, relying solely on the current site investigation 

data, and does not incorporate any historical or contextual knowledge that might improve 

its reliability. 

In contrast, the analysis incorporating the Bayesian approach explicitly considers 

uncertainty in the soil parameters by integrating prior knowledge from earlier research 

conducted on similar soil types. By applying prior probability distributions to model 

expected soil behavior—based on well-documented studies—the Bayesian method allows 

this historical information to influence and adjust the results obtained from current site data. 

This process results in an updated (posterior) estimate that better reflects both the observed 

data and the broader geotechnical understanding of the site conditions. 

The incorporation of uncertainty through Bayesian inference is particularly valuable in 

geotechnical engineering, where soil properties are inherently variable and rarely known 

with complete certainty. Rather than treating the analysis as fixed and absolute, the 

Bayesian framework offers a dynamic and data-driven approach that adapts to new 

information. Consequently, this method improves the accuracy of pile capacity prediction, 

enhances confidence in the design, and contributes to safer and more cost-effective 

foundation solutions. 

Furthermore, the Bayesian approach facilitates continuous updating of the soil parameter 

estimates as new data becomes available, making it a powerful tool for iterative design and 
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decision-making processes. This adaptability is especially beneficial in complex or variable 

soil conditions, such as those often encountered in tropical regions like Bali, where soil 

heterogeneity and environmental factors can significantly impact foundation performance. 

By leveraging both prior knowledge and current measurements, engineers can achieve a 

more robust understanding of the subsurface conditions, ultimately leading to foundation 

designs that are not only safer but also optimized in terms of material usage and 

construction costs. 

4. CONCLUSSIONS 

The Cone Penetration Test (CPT) results from multiple locations in the Tumbak Bayuh 

area, Kerobokan, North Kuta District, Bali, reveal a relatively consistent subsurface profile 

with a competent soil layer predominantly composed of silty sand at depths between 4 to 7 

meters. The upper layers consist of softer, compressible soils unsuitable for direct 

foundation support without improvement. The denser silty sand layer identified provides a 

suitable bearing stratum for pile foundations or deeper shallow foundations, though 

localized variations in soil properties highlight the importance of careful design 

consideration to prevent differential settlement. 

The comparison between deterministic bearing capacity calculations and those 

incorporating a Bayesian probabilistic approach demonstrates the added value of 

integrating prior knowledge and quantifying uncertainty in geotechnical analysis. While 

deterministic methods rely solely on current site data, Bayesian updating combines 

historical soil parameter information with new measurements, resulting in more realistic 

and reliable estimates of pile capacity. This approach enhances the accuracy of predictions, 

supports safer foundation designs, and promotes cost efficiency. 

Furthermore, the Bayesian method’s ability to iteratively update soil parameter estimates 

as new data becomes available makes it particularly advantageous for complex and 

heterogeneous soil conditions such as those found in tropical coastal areas like Bali. 

Overall, incorporating probabilistic methods like Bayesian analysis in foundation design 

represents a promising advancement toward improved geotechnical engineering practices 

that accommodate soil variability and uncertainty, ensuring both structural safety and 

economic optimization. 
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