$\overset{\text{jurnal teknik sipil}}{\text{MACCA}}$

Penerapan *Building Information Modeling* pada Pembangunan Gedung Klinik Pratama Kabupaten Barru

Munawwir¹, Mutmainnah Fajar², Muh Husni Maricar^{3*}

^{1,2,3)} Program Studi Teknik Sipil Fakultas Teknik Universitas Muslim Indonesia Jl. Urip Sumoharjo Km 05 Panaikang, Kec. Panakkukang, Kota Makassar, Sulawesi Selatan 90231

¹<u>munawwirrrr@gmail.com;</u>²<u>mutmainnahfjrr98@gmail.com</u>;³<u>husnimaricar@gmail.com</u>

ABSTRAK

Building Information Modeling (BIM) adalah teknologi informasi modern untuk memodelkan suatu gedung dalam bentuk tiga dimensi dan mensimulasikan sebelum masuk ke dalam proses konstruksi. BIM memfasilitasi proses desain dan konstruksi yang lebih terintegritas untuk mendapatkan hasil yang lebih baik dan pengeluaran yang terkendali. Salah satu *software* yang telah mengadopsi BIM adalah SketchUp 2021 yang memilik beberapa keunggulan yang memungkinkan memodelkan struktur bangunan dalan bentuk 3D secara detail. Penelitian ini bertujuan untuk memodelkan Gedung Klinik Pratama pada bagian sub struktur dan upper struktur menggunakan SketchUp dan dengan bantuan Quantifier Pro. Hasil dari penelitian ini menunjukkan hasil 3D model dan 5D, untuk memperoleh informasi berupa data *Component Report* (Laporan Komponen), *Cost Detail Report* (Laporan Detail Biaya), *Cost Summary* (Rekapitulasi Biaya Pekerjaan). Total rekapitulasi biaya yang diperoleh senilai Rp. 1.806.841.828,37 yang meliputi pekerjaan sub struktur dan *upper* struktur.

Kata kunci: Building Information Modeling, SketchUp, Quantifier Pro, Pemodelan

ABSTRACT

Building Information Modeling (BIM) is a modern information technology to model a building in three-dimensional form and simulate it before entering into the construction process. BIM facilitates a more integrity design and construction process to get better results and controlled expenses. One of the software that has adopted BIM is SketchUp 2021 which has several advantages that allow modeling building structures in 3D shapes in detail. This research aims to model the Primary Clinic Building on the substructure and upper part of the structure using SketchUp and with the help of Quantifier Pro. The results of this study show the results of 3D models and 5D, to obtain information in the form of Component Report (Component Report), Cost Detail Report (Cost Detail Report), Cost Summary (Recapitulation of Work Costs). The total recapitulation of the costs obtained amounted to Rp. 1,806,841,828.37 which includes substructure and upper structure work.

Keywords: Building Information Modeling, SketchUp, Quantifier Pro, Modeling

1. Pendahuluan

1.1 Latar Belakang

Saat ini teknologi informasi dengan format digital kerap digunakan di industri konstruksi seluruh dunia. Bahkan teknologi digitalpun memberikan dampak yang besar dalam melakukan percepatan pembangunan lebih efisien sehingga menjadi dan produktif, salah satunya dengan menerapkan Building Information Modeling (BIM) dengan konsep Virtual Building pertama kali digunakan pada tahun 1987 yang terus berkembang sampai saat ini (Indonesia, 2021). Pada beberapa tahun terakhir, pemerintah mendorong infrastruktur secara masif, oleh karena itu dibutuhkan terobosan untuk menunjang kecepatan suatu konstruksi di Indonesia, BIM inilah yang menjadi tools untuk mencapai tujuan tersebut. BIM mampu memodelkan struktur. arsitek. serta mekanikal elektrikal plumbil (MEP) menjadi satu kesatuan dengan konsep Virtual Building (Berlian et al., 2016)

BIM merupakan teknologi yang seluruh prosesnya berjalan secara terintegrasi dalam sebuah model digital, dengan menggunakan BIM dapat diperoleh pemodelan dalam bentuk 3D dengan elemen panjang, lebar dan tinggi. Penambahan elemen waktu untuk penjadwalan menjadikan BIM dalam 4D. Sedangkan BIM 5D dengan menambahkan elemen biaya untuk melakukan estimasi. Lalu BIM dapat dimanfaatkan untuk perancangan kinerja bangunan sebagai analisis energi dan pertimbangan dampak lingkungan yang disebut 6D. Setelah elemen-elemen informasi yang terkandung dalam BIM lengkap dapat digunakan owner untuk manajemen fasilitas seperti perawatan dan operasional yang disebut 7D (Pantiga & Soekiman, 2021). Salah satu *software* yang mendukung konsep BIM yaitu SketchUp 2021. SketchUp umumnya digunakan karena pengoprasian dari *software* tersebut relatif mudah.

Penelitian ini membahas penggunaan konsep *Building Information Modeling* (BIM) dengan pemodelan 3D dan 5D menggunakan *software* SketchUp 2021 dengan *extension* Quantifier Pro pada pembangunan Gedung Klinik Pratama bagian sub struktur (pondasi, sloof dan tulangannya) dan *upper* struktur (kolom, balok, plat, tangga dan tulangannya) yang saling terintegrasi antara 3D model dan biaya.

1.2 Rumusan Masalah

Permasalahan yang diambil dari penelitian ini adalah:

- 1. Bagaimana penerapan BIM menggunakan *software* SketchUp 2021 dengan memodelkan dimensi 3D Gedung Klinik Pratama pada bagian sub struktur (pondasi, sloof dan tulangannya) dan *upper* struktur (kolom, balok, plat dan tulangan-nya)?
- 2. Bagaimana pemodelan dimensi 3D Gedung Klinik Pratama terintegrasi dengan dimensi 5D (volume dan biaya) menggunakan *extension* Quantifier Pro?

1.3 Tujuan Penelitian

Berdasarkan rumusan masalah tersebut, maka tujuan penelitian ini adalah:

- 1. Memodelkan Gedung Klinik Pratama bagian sub struktur (pondasi, sloof dan tulangannya) dan *upper* struktur (kolom, balok, plat, tangga dan tulangannya menggunakan software SketchUp 2021 dengan penerapan *Building Information Modeling* (BIM).
- 2. Mengintegrasikan 3D model dan 5D (volume dan biaya) Gedung Klinik Pratama dengan *extension* Quantifier Pro.

2. Metode Penelitian 2.1 Lokasi Penelitian

Objek dalam penelitian ini berlokasi di Jalan Abd. Kadir Jaelani Kabupaten Barru.

Gambar 1 Peta lokasi pembangunan gedung Klinik Pratama

2.2 Jenis Data

Data yang digunakan pada penelitian ini merupakan data sekunder yang diperoleh dari konsultan. Data yang digunakan merupakan *Shop Drawing* dan Rencana Anggaran Biaya.

2.3 Tahapan Penelitian

- 1. Studi Literatur Dilakukan dengan mencari referensi penelitian terdahulu.
- 2. Identifikasi Masalah Menganalisa proyek Gedung Klinik Pratama untuk dimodelkan ke dalam metode BIM dengan program bantu SketchUp dengan ekstensi Quantifier Pro.
- 3. Pengumpulan Data Data yang dibutuhkan merupakan *ShopDrawing* dan Rencana Anggaran Biaya.
- Pengolahan Data Setelah data yang dibutuhkan terkumpul selanjutnya dilakukan pengolahan data dan membagi informasi sesuai dengan
- jenis pekerjaan yang ingin dimodelkan.
 5. Pemodelan Memodelkan data yang telah diolah dengan menggunakan *software* SketchUp 2021 dengan Ekstensi

Quantifier Pro.

3. Hasil dan Pembahasan 3.1 Umum

Hasil dari pemodelan ini berupa dimensi yang berada pada parameter yang terdapat pada BIM yaitu, 3D dan 5D sesuai dengan lokasi gedung Klinik Pratama berada, dengan beberapa tambahan informasi didalamnya seperti volume pekerjaan dan estimasi biaya. Pemodelan ini menggunakan *software* SketchUp 2021 dengan ekstensi Quantifier Pro.

Kelebihan dari *software* ini salah satunya dapat terintegrasi dengan *software* lain untuk memudahkan dan mempercepat proses pemodelan suatu gedung dengan metode BIM (Angraini, 2023). *Layout* atau denah pada gedung Klinik Pratama ini mempunyai luas 32 m x 60 m, data yang digunakaan merupakan data *Shop Drawing* yang diperoleh dari konsultan perencana dan dimodelkan sesuai dengan perencanaan dan mutu bahan yang sudah direncanakan. Untuk memodelkan *layout* tersebut menjadi 3D terlebih dahulu *import* data 2D ke dalam *software* SketchUp. Hasil dari *import* data tersebut dapat pada gambar 2.

Gambar 2. Hasil import file Autocad ke SketchUp 2021

3.1 Hasil Visual Pemodelan

Visualisasi 3D dengan menggunakan *extension rendering* yaitu Enscape. Model struktur yang sudah dirender akan menghasilkan gambar yang lebih detail

yang dilengkapi oleh *background* dan sinar matahari yang dapat diatur langsung untuk mendapatkan visual 3D yang lebih baik.

Gambar 3. Hasil pemodelan 3D sub struktur (pondasi, sloof dan tulangannya)

Penerapan Building Information Modeling pada Pembangunan Gedung Klinik Pratama Kabupaten Barru (Munawwir, Mutmainnah Fajar, Muh Husni Maricar)

Gambar 4. Hasil pemodelan 3D *upper* struktur (kolom, balok, plat, tangga dan tulanggannya)

Gambar 5. Hasil pemodelan 3D sub struktur dan upper struktur klinik pratama

4.2 Hasil Pemodelan 5D dengan Extension Quantifier Pro

Setelah memodelkan gedung klinik kemudian dilanjutkan ke tahap volume pekerjaan, rencana anggaran biaya dan rekapitulasi biaya menggunakan Quantifier extension Pro, dengan menyusun analisa harga satuan pekerjaan menggunakan template yang telah dibuat tentang Analisa Harga Satuan Bidang Pekerjaan Umum menggunakan program Microsoft Excel. berdasarkan (Menteri Pekerjaan Umum Dan Perumahan

Rakyat, 2016). Kemudian masukkan harga dan upah pada template analisa harga satuan pekerja, untuk *overhead* dan profit kemudian masukkan pada kolom *waste* dan *tax* sebesar 10%. Setelah itu import template analisa harga satuan pekerja pada *Report Setting* sehingga terbentuk tag pada *software* SketchUp dan tag tersebut sudah berisi Analisa harga satuan pekerja. Berikut adalah penyusunan template analisa harga satuan pekerjaan. (Tabel 1).

No	Uraian	Koefisien	Satuan	Harga Satuan (Rp)	Faktor Kehilangan	Pajak %
I.	PEKERJAAN BETON (I	Pekerjaan betor	n f'c=19,3 MF	Pa (K225)		
А.	TENAGA		-			
	Pekerja	1,650	OH	75000	5	5
	Tukang Batu	0,275	OH	150000	5	5
	Kepala Tukang	0,028	OH	175000	5	5
	Mandor	0,083	OH	180000	5	5
В.	BAHAN					
	Semen Portland	371,000	kg	1500	5	5
	Pasir Beton	698,000	kg	318,180	5	5
	Kerikil (Maks 30mm)	1047,000	kg	231,000	5	5
	Air	215,000	Liter	689,47	5	5
II.	PEKERJAAN PEMBESI	AN D.10 (Pen	nbesian 1 kg d	engan besi po	olos atau besi	ulir)
`	TENAGA					
	Pekerja	0,007	OH	138700	5	5
	Tukang Besi	0,007	OH	173300	5	5
	Kepala Tukang	0,0007	OH	187200	5	5
	Mandor	0,0004	OH	216300	5	5
B.	BAHAN					
	Besi Beton (Polos Ulir)	1,05	kg	5958,3333	5	5
	Kawat Beton	0,015	kg	19250	5	5
III.	PEKERJAAN PEMBESI	AN D.14 (Pen	nbesian 1 kg d	engan besi po	olos atau besi	ulir)
Α.	TENAGA					
	Pekerja	0,007	OH	138700	5	5
	Tukang Besi	0,007	OH	173300	5	5
	Kepala Tukang	0,0007	OH	187200	5	5
	Mandor	0,0004	OH	216300	5	5
B.	BAHAN	,				
	Besi Beton (Polos Ulir)	1,05	kg	13291,67	5	5
	Kawat Beton	0,015	kg	19250	5	5
IV.	PEKERJAAN PEMBESI	AN D.16 (Pem	besian 1 kg d	engan besi po	olos atau besi	ulir)
A.	TENAGA	```	0			,
	Pekerja	0,007	OH	138700	5	5
	Tukang Besi	0.007	OH	173300	5	5
	Kepala Tukang	0,0007	OH	187200	5	5
	Mandor	0,0004	OH	216300	5	5
B.	BAHAN	- ,			-	-
	Besi Beton (Polos Ulir)	1,05	kg	17050	5	5
	Kawat Beton	0,015	kg	19250	5	5

Tabel 1 Cost Detail Report Pekerjaan	Gedung Klinik Pratama
--------------------------------------	-----------------------

Laporan Komponen

Laporan Komponen menghasilkan laporan seperti panjang, lebar, ketinggian, luasan dan volume. Untuk menghasilkan laporan pada suatu objek digunakan *toolbar make component* pada objek pondasi, kolom, plat, sloof dan tangga. Hasil rekapitulasi laporan komponen pekerjaan beton gedung dapat dilihat pada tabel 2 dan pekerjaan pembesian dapat dilihat pada tabel 3.

	- J				
Ionia Dokomiaan	Tumloh	Total	Total	Total	
Jenns rekerjaan	Juman	Panjang (m)	Luasan (m2)	Volume (m3)	
Pekerjaan Beton Balok	21	712,5	384,464	114,22	
Pekerjaan Beton Kolom Struktur	86	417,1	208,55	104,275	
Pekerjaan Beton lat Lantai	53	380,4	1207,22	144,866	
Pekerjaan Beton Pondasi Footplate	44	51,6	63,36	19,008	
Pekerjaan Beton Sloof	15	491,5	278,1	97,95	
Pekerjaan Beton Tangga	30	48,825	20,101	4,044	

Tabel	2.	Laporan	komponen	pekeriaan	beton	Klinik	Pratama
Laber		Daporan	Romponon	penerjaan	000011	17111111	1 I availia

Tabel 3. Laporan komponen	ı pekerjaan	pembesian	Klinik Pratama
---------------------------	-------------	-----------	----------------

		Total	Total	Total
Jenis Pekerjaan	Jumlah	Panjang	Luasan	Volume
		(m)	(m2)	(m3)
Pekerjaan Pembesian Balok D.10	5186	$2436{,}57$	86,186	271,127
Pekerjaan Pembesian Balok D.14	78	2740,476	39,104	122,533
Pekerjaan Pembesian Balok D.16	183	6233, 173	99,026	8664,11
Pekerjaan Pembesian Kolom Struktur D.10	2795	1263,727	$87,\!591$	783,503
Pekerjaan Pembesian Kolom Struktur D.16	1045	$5548,\!371$	$91,\!946$	7712,173
Pekerjaan Pembesian Plat Lantai D.10	1763	12906,1	129,061	8001,782
Pekerjaan Pembesian Plat Lantai D.14	1297	4148,591	63,833	5088,211
Pekerjaan Pembesian Plat LantaiD.16	1311	4254,576	71,926	5913,863
Pekerjaan Pembesian Pondasi FootPlate D.16	1548	1842,494	37,453	2478,778
Pekerjaan Pembesian Sloof D.10	3802	2129,229	66,101	1320,124
Pekerjaan Pembesian Sloof D.14	60	1965,926	28,363	2378,772
Pekerjaan Pembesian Sloof D.16	151	4931,398	78,216	6854,645
Pekerjaan Pembesian Tangga D.10	5	6,892	0,167	4,273
Pekerjaan Pembesian Tangga D.14	200	75,535	1,763	91,398
Pekerjaan Pembesian Tangga D.16	142	377,109	6,53	524,179

Data terakhir yang dihasilkan adalah *Cost Summary Report* (Rekapitulasi Biaya Pekerjaan) yang berisi uraian jenis pekerjaan, total biaya dan total pajak. Berikut uraian tabel dari rekapitulasi biaya pekerjaan Gedung Klinik Pratama Kabupaten Barru menggunakan Ekstensi Quantifier Pro. Total rekapitulasi biaya yang di peroleh menggunakan *software* SketchUp 2021 dan Quantifier Pro adalah senilai Rp 1.806.841.828,37.

Tabel 4. Rekapitu	lasi biaya pekerjaan
-------------------	----------------------

No	Nama Pekerjaan	Volume Pekerjaan	Satuan	Tota	l Biaya Pekerjaan
I.	Sub-Struktur				
1.	Pekerjaan Beton Pondasi Footplate	19,008	m ³	Rp.	30.772.044,23
2.	Pekerjaan Beton Sloof	100,65	m^3	Rp.	158.571.219,07
3.	Pekerjaan Pembesian Pondasi Footplate	2478,778	Kg	Rp.	56.277.149,53
4.	Pekerjaan Pembesian Sloof	11204,334	Kg	Rp.	223.509.878, 91
II	. Upper-Struktur				
1.	Pekerjaan Beton Kolom	104,275	m ³	Rp.	168.810.759,23
2.	Pekerjaan Beton Balok	111,52	m^3	Rp.	180.539.571,85
3.	Pekerjaan Beton Plat Lantai	114,866	m^3	Rp.	234.524.161, 83
4.	Pekerjaan Beton Tangga	4,044	m ³	Rp.	6.547.072,95

No	Nama Pekerjaan	Volume Pekerjaan	Satuan	Total Biaya Pekerjaan		
5.	Pekerjaan Pembesian Kolom	8495,676	Kg	Rp.	182.823.429,34	
6.	Pekerjaan Pembesian Balok	$13047,\!257$	Kg	Rp.	276.305.734,19	
7.	Pekerjaan Pembesian Plat Lantai	19003,856	Kg	Rp.	374.504.211,8	
8.	Pekerjaan Pembesian Tangga	619,85	Kg	Rp.	13.656.595,44	
Total					1.806.841.828,37	

4. Penutup

4.1 Kesimpulan

- 1. Data pemodelan berbentuk 3D yang terintegrasi dengan volume dan pemodelan biaya, estimasi ini meliputi bagian sub Struktur dan Upper Struktur dengan menggunakan BIM dengan konsep software SketchUp 2021 vang memiliki objek informasi pada setiap pemodelan, data tersebut berupa nama pekerjaan, perletakan objek dan dimensi.
- 2. Ekstensi Quantifier Pro diperoleh data berupa *Component Report* (Laporan Komponen) dimana laporan komponen berisi data panjang, lebar, tinggi, total panjang, total luasan, total volume dan total berat. Data lain di hasilkan adalah Cost Detail Report (Laporan Detail Biaya) yang meliputi uraian pekerjaan, jumlah kebutuhan pekerjaan/*Quantity*, satuan pekerjaan, biaya pekerjaan, pajak pekerjaan, dan total biaya pekerjaan.

4.2 Saran

- Perlu dilakukan pembelajaran yang lebih mendalam untuk pemodelan 3D karena setiap jenis pekerjaan dibentuk dalam objek 3D.
- 2. Perlu diupayakan untuk pembelajaran pengenalan BIM pada masa perkuliahan.

Daftar Pustaka

Anggraini, D. F. (2023). PEMODELAN STRUKTUR GEDUNG APARTEMEN GUNAWANGSA GRESIK MENGGUNAKAN SOFTWARE AUTODESK

REVIT. ViTeks, 1(1), 33-42.

- Berlian, C. A., Adhi, R. P., Hidayat, A., & Nugroho, H. (2016).Perbandingan Efisiensi Waktu, Biaya, dan Sumber Daya Manusia Antara Metode Building Information Modelling (BIM) Dan Konvensional (Studi Kasus : Perencanaan Gedung 20 Lantai). Karya Teknik Sipil, 5(2), 220–229.
- Builder Indonesia. (2021). Sejarah BIM (Building Information Modelling) di Dunia. Builder Indonesia. https://www.builder.id/sejarahbim-building-informationmodelling-di-dunia/
- Menteri Pekerjaan Umum Dan Perumahan Rakyat. (2016).Lampiran Peraturan Menteri Pekerjaan Umum dan Perumahan Rakvat Nomor: 28/PRT/M/2016 Tentang Satuan Analisis Pekerjaan Bidang Pekerjaan *Umum*. 1–883.
- Pantiga, J., & Soekiman, A. (2021). Kajian Implementasi Building Information Modeling (BIM) Di Dunia Konstruksi Indonesia. Jurnal Rekayasa Sipil, 15(2), 104– 110.
- Saputri, F. (2012). Penerapan Building Information Modeling (BIM) Pada Pembangunan Struktur Gedung Perpustakaan IPB Menggunakan Software Tekla Structure 17