

https://mail.jurnal.ft.umi.ac.id/index.php/JILMATEKS

Studi Kinerja Jaringan Pipa Air Bersih Menggunakan Epanet 2.0 di Kecamatan Biringkanaya (Studi Kasus Perumnas Sudiang Kota Makassar)

Irsyan Arnur¹, Muhammad Imam Prayoga², Ratna Musa³, Muhammad Haris⁴, Mas'ud SAR⁵

 $^{1,2,3,4,5)}{\rm Program}$ Studi Teknik Sipil Fakultas Teknik Universitas Muslim Indonesia Jl. Urip Sumoharjo Km 05 Panaikang, Kec. Panakkukang, Kota Makassar, Sulawesi Selatan 90231 ¹⁾iccangarnur4@gmail.com; ²⁾yogabhadul@gmail.com;³⁾ratna musaa@gmail.com; ⁴⁾muhharis.umar@umi.ac.id;⁵⁾mas'ud.sar@umi.ac.id

ABSTRAK

Kemampuan PDAM sebagai penyedia air bersih umumnya masih terbatas, baik kualitas, jangkauan, maupun mutu pelayanan. Adapun upaya yang dilakukan PDAM dalam meningkatkan performanya adalah membangun Instalasi Pengolahan Air (IPA) yang berfungsi sebagai sarana untuk mengolah air baku menjadi air yang siap di gunakan sesuai standar air minum (SNI 01-0220-1987). Berdasarkan informasi yang kami dapatkan dari beberapa pelanggan PDAM di Perumnas Sudiang, rata - rata mengatakan efektivitas pelayanan PDAM saat ini masih tidak efektif karena jadwal pengaliran air yang hanya 7-12 jam saja sehari. Untuk mengatasi masalah di atas kami melakukan penelitian lebih lanjut tentang kinerja jaringan pipa PDAM. Dalam penelitian ini kami menggunnakan aplikasi Epanet 2.0 dan SPSS untuk mengukur kinerja jaringan dan kinerja tingkat pelayanan. Hasil dari Epanet menghasilkan kinerja jaringan pada mlm hari sebesar 66% artinya masi kurang bagus sedangkan jika siang hari air sama sekali tidak mengalir artinya kinerja jelek. Hasil dari SPSS tingkat pelayanan dari responden memilih jawaban kurang efektif sebesar 43,75% dan tidak efektif sebesar 40.63%.

Kata Kunci: Kinerja, Jaringan, Epanet, PDAM

ABSTRACT

The ability of PDAMs as clean water providers is generally still limited, in terms of quality, reach, and service quality. The efforts made by PDAM in improving its performance are to build a Water Treatment Plant (IPA) which functions as a means to process raw water into water that is ready to be used according to drinking water standards (SNI 01-0220-1987). Based on the information we got from several PDAM customers at Perumnas Sudiang, on average, the effectiveness of PDAM services is currently still ineffective because the water flow schedule is only 7-12 hours a day. To solve the problems we conducted further research on the performance of the PDAM pipeline network. In this study, we use Epanet 2,0 and SPSS applications to measure network performance and service level performance. The results from Epanet produce network performance at night of 66%, meaning that it is still not good, while during the day the water does not flow at all, it means poor performance. The results of the SPSS service level of respondents chose the less effective answer by 43,75% and ineffective by 40,63%.

Keywords: Performance, Network, Epanet, PDAM

1. Pendahuluan

1.1 Latar Belakang

Air merupakan senyawa kimia yang sangat penting bagi kehidupan makhluk hidup di muka bumi ini. Fungsi air bagi kehidupan tidak dapat digantikan oleh senyawa lain. Penggunaan air yang utama dan sangat vital bagi kehidupan adalah sebagai air minum. Hal ini terutama unntuk mencukupi kebutuhan air didalam tubuh manusia itu sendiri (Herdiyani, 2015).

Saat ini kebutuhan air bersih untuk memenuhi aktivitas penduduk semakin meningkat. Peningkatan ini terjadi tidak hanya karena pertambahan jumlah penduduk, tetapi juga karena bertambahnya kegiatan yang membutuhkan air, seperti kawasan perdagangan, industri, pendidikan, pariwisata, dan lainnya (Sistyanto & Hadi, 2012). Baik untuk konsumsi rumah tangga maupun kegiatan produksi, terdapat kekurangan air layak konsumsi, yang terutama disebabkan oleh kualitas air yang terbatas. Untuk menghadapi kebutuhan air yang semakin meningkat dan persaingan air yang semakin ketat, maka perlu dilakukan pengelolaan sumber daya air yang baik (Cholil, 1998).

Saat ini, air tidak lagi hanya semata-mata berfungsi untuk minum, mandi, dan mencuci tetapi juga berkembang menjadi bahan ekonomis terutama di kota-kota. Dengan melihat kenyataan yang ada, tidak dapat dipungkiri, bahwa air merupakan suatu kebutuhan yang tidak dapat dipisahkan dari kebutuhan seharihari bagi masyarakat. Oleh karena itu, peranan pemerintah daerah sangat diharapkan, karena salah satu fungsi dari pemerintah adalah melayani kepentingan masyarakat (Paranoan, 2018).

Salah satu permasalahan yang timbul dalam pengelolaan sumber daya air bersih adalah kemampuan PDAM sebagai penyedia air bersih yang umumnya masih terbatas, baik kualitas, jangkauan, maupun mutu pelayanannya.

Adapun upaya yang dilakukan PDAM dalam meningkatkan performanya adalah membangun Instalasi Pengolahan Air (IPA) yang berfungsi sebagai sarana untuk mengolah air baku menjadi air yang siap di gunakan sesuai standar air minum (Bakri, 2011).

Berdasarkan informasi yang kami dapatkan dari beberapa pelanggan PDAM di Perumnas Sudiang, rata - rata mengatakan efektivitas pelayanan PDAM saat ini masih tidak efektif karena jadwal pengaliran air yang hanya 7-12 jam saja sehari. Selain itu, masyarakat juga masih sering menggunakan mesin pompa air untuk membantu kelancaran air. Kemungkinan lainnya juga adalah jauhnya instalasi Pengolahan Air (IPA) yang jaraknya ±10 km ke Perumnas sehingga meningkatnya Sudiang kemungkinan berkurangnya tekanan dan juga kehilangan air ke Perumnas Sudiang. Akhirnya dari banyaknya keluhan yang muncul, banyak pelanggan PDAM di Perumnas Sudiang yang memutuskan untuk menggunakan sumur bor untuk memenuhi kebutuhan airnya. Hal ini sesuai dengan hasil wawancara yang kami lakukan dengan pihak PDAM Kota Makassar yang menyatakan bahwa takanan air pada Perumnas Sudiang memang masih rendah serta kontinuitas air yang belum tersedia selama 24 jam.

Penelitian menggunakan metode sama telah lebih dulu dilakukan pada Perumahan BTP (Musa & Amin, 2019). Berdasarkan latar belakang permasalahan di atas, perlu dilakukan penelitian lebih lanjut mengenai kinerja system jaringan distribusi air bersih PDAM di Kota Makassar, khususnya perumnas sudiang Kec. Biringkanaya. Mengingat peran air bersih yang sangat penting bagi kelangsungan hidup manusia

1.2 Rumusan Masalah

Berdasakan latar belakang yang diuraikan di atas, rumusan masalah yang akan dikaji dalam penelitian ini yaitu:

 Berapa Tingkat pelyanan PDAM berdasarkan persepsi pelanggan di

- Perumnas Sudiang Kecamatan Biringkanaya Kota Makassar ?
- Pengaruh Bagaimana kinerja sistem jaringan distribusi air bersih di Perumnas Sudiang Kecamatan Biringkanaya?

1.3 Tujuan Penelitian

Berdasarkan rumusan masalah di atas, maka tujuan dari penelitian ini adalah:

- Kinerja pelyanan PDAM berdasarkan persepsi pelanggan di Perumnas Sudiang Kecamatan Biringkanaya Kota Makassar.
- 2. Menganalisis Menghasilkan besarnya kinerja sistem jaringan distribusi air

bersih PDAM di Peumnas Sudiang Kecamatan Biringkanaya.

2. Metode Penelitian

2.1 Lokasi Penelitian

Penelitian ini dilaksanakan di Perumnas Sudiang Kecamatan Biringkanaya Kota Makassar, Provinsi Sulawesi Selatan

- Pelanggan PDAM di Perumnas Sudiang, rata-rata mengatakan efektivitas pelayanan PDAM saat ini masih tidak efektif karena jadawal pengaliran air yang hanya 7-12 jam sehari
- 2. Masyaraktat juga masih sering menggunakan pompa air untuk membantu kelancaran air.

Gambar 1 Lokasi penelitian (Perumas Sudiang)

2.2 Jenis Penelitian

Jenis penelitian ini adalah deskriptif dan berarti jenis penelitian yang bertujuan untuk menjelaskan fenomena yang menjadi fokus atau subjek penelitian. Penelitian deskriptif adalah penelitian yang bertujuan untuk menjelaskan situasi dan peristiwa. Metode yang digunakan adalah survei lapangan dan survei literatur.

2.3 Pengumpulan Data

Pengumpulan data pada penelitian ini terdiri dari data primer dan data sekunder.

2.3.1 Data Primer

Data primer diperoleh dari pengamatan dan pengukuran langsung di lapangan terhadap objek di lokasi penelitian yang meliputi:

1. Observasi

2. Wawancara

2.3.2 Data Sekunder

Data sekunder diperoleh dari bahan kepustakaan yang relevan dengan penelitian ini dan institusi terkait antara lain Dinas Pekerjaan Umum yang meliputi:

- 1. Data Jumlah penduduk
- 2. Data kepustakaan
- Data Dokumentasi

2.4 Teknik Analisis Data

Menggunakan Software SPSS (Statistical Package For Social Sciences) dan Software EPANET 2.0 Dalam penelitian ini, kami menggunakan bantuan Statistical Package For Social Sciences

 Uji validitas digunakan untuk mengukur valid atau tidaknya

- kuesioner. Pengujian ini dilakukan menggunakan correlacted item total corelations.
- 2. Uji Realibilitas merupakan alat untuk mengukur suatu kuisioner yang merupakan indicator dari variable atau konstruk.
- 3. Uji normalitas dimaksud untuk mengambil nilai residual yang diteliti berdistribusi normal atau tidak.
- 4. Uji Hipotesis

3. Hasil dan Pembahasan

3.1 Analisis Kinerja Pelayanan

Analisis Berdasarkan data sekunder dari PDAM Kota Makassar, sumber air untuk mendistribusikan air ke Perumnas Sudiang adalah IPA II Panaikang yang di tampung pada Reservoir KIMA, kemudian disalurkan pada jaringan pipa distribusi ke Perumnas Sudiang

Dari total 96 anket kuisioner yang telah disebar, maka untuk uji validitas dengan taraf signifikan 5% diambil nilai R, dapat dilihat Tabel 1.

Tabel 1 Uji validitas

No.	Kode	Pertanyaan R hitu		R tabel	Ket.
		$Hydraulic\ Performance$			
1		X1.1	0,653	0,1986	Valid
2	X1	X1.2	0,818	0,1986	Valid
3		X1.3	0,849	0,1986	Valid
·		Reliability Performance	•		
4		X2.1	0,819	0,1986	Valid
5	Vo	X2.2	0,868	0,1986	Valid
6	X2	X2.3	0,765	0,1986	Valid
7		X2.4	0,738	0,1986	Valid
		Water Quantity Performance (Kontinuitas)	е		
8		X3.1	0,713	0,1986	Valid
9	Х3	X3.2	0,585	0,1986	Valid
10		X3.3	0,716	0,1986	Valid
11		X3.4	0,716	0,1986	Valid
		Water Quality Performance (Kualitas Fisik Air)			
12		X4.1	0,806	0,1986	Valid
13		X4.2	0,727	0,1986	Valid
14		X4.3	0,779	0,1986	Valid
15	X4	X4.4	0,704	0,1986	Valid
16		X4.5	0,789	0,1986	Valid
17		X4.6	0,772	0,1986	Valid
		Perilaku Pelanggan			
18		X.5.1	0,904	0,1986	Valid

No.	Kode	Pertanyaan	R hitung	R tabel	Ket.
19	X5	X.5.2	0,852	0,1986	Valid
		Kinerja Pelayanan			
20	·	Y.1	0,739	0,1986	Valid
21	77	Y.2	0,668	0,1986	Valid
22	Υ -	Y.3	0,623	0,1986	Valid
23	_	Y.4	0,704	0,1986	Valid

Berdasarkan tabel di atas diketahui bahwa dari 23 item pertanyaan yang diteliti, semua nilai R hitungnya menunjukkan angka lebih dari R tabel sehingga dapat dilanjutkan pada analisis selanjutnya pada tabel 2.

Tabel 2 Hasil uji rehabilitas

Kode	Variabel	Nilai Alpha Analisa	Cronbath Alpha	Ket
X1	$Hydraulic\ Performance$	0,673	0,6	Reliebel
X2	Reliability Performance	0,799	0,6	Reliebel
X3	Water Quantity Performance	0,602	0,6	Reliebel
X4	Water Quality Performance	0,853	0,6	Reliebel
X5	Perilaku Pelanggan	0,697	0,6	Reliebel
Y	Kinerja Jaringan	0,612	0,6	Reliebel

Berdasarkan Tabel 2 didapatkan bahwa seluruh intrumen penelitian memiliki nilai *Cronbach Alpha* lebih dari 0,6. Hal ini menunjukkan bahwa seluruh instrumen penelitian ini reliabel atau dapat memberikan hasil yang konsisten apabila dilakukan pengukuran kembali terhadap subyek yang sama.

Setelah Uji normalitas digunakan untuk menguji apakah dalam model regresi,

kedua variabel (bebas maupun terikat) mempunyai distribusi normal. Uji ini digunakan untuk menguji apakah data terdistribusi secara normal atau tidak. Model regresi yang baik adalah yang memiliki data terdistribusi secara normal. Adapun pengujian yang digunakan yaitu uji Kolmogorov Smirnov dimana nilai signifikansi harus lebih dari 0,05 agar dikatakan normal. Distribusi dapat dilihat di tabel 3.

Tabel 3 Hasil uji normalitas

One-Sample Kolmogorov-Smirnov Test									
		$Unstandardized\ Residual$							
N		96							
$Normal\ Parameters^{a,b}$	Mean	.0000000							
	Std. Deviation	1.70364999							
Most Extreme Differences	Absolute	.073							
	Positive	.073							

	$Unstandardized\ Residual$
Negative	062
Test Statistic	.073
Asymp. Sig. (2-tailed)	.200°
a. Test distribution is Normal.	
b. Calculated from data.	
c. Lilliefors Significance Correction.	

Dari hasil pengujian normalitas di atas, didapatkan nilai signifikansi sebesar 0,200, yang artinya data terdistribusi secara normal. Pengujian hipotesis digunakan untuk melihat ada tidaknya

pengaruh variabel independen (X), yaitu Hydraulic Performance (X1), Reliability Performance (X2), Water Quantity Performance.

Tabel 4 Hasil uji F statistic

	$Coefficients^a$												
				Standardize									
		Unstance	dardized	d									
		Coeffi	cients	Coefficients									
Mod	lel .	В	Std. Error	Beta	${f T}$	Sig.							
1	(Constant)	1.156	1.262		.916	.362							
	Hidraulic	.211	.090	.209	2.349	.021							
	Reliability	.192	.068	.259	2.843	.006							
	Quantity	.390	.084	.440	4.629	.000							
	Quality	013	.041	031	320	.750							
	Perilaku	076	.096	074	788	.433							
	Pelanggan												

Tabel 5 Hasil uji regresi linear berganda

	ANOVAa													
		Sum of	·	Mean	·									
Model		Squares	df	Square	\mathbf{F}	Sig.								
1	Regression	118.676	5	23.735	7.747	.000b								
	Residual	275.730	90	3.064	•									
	Total	394.406	95		·									

a. Dependent Variable: Kinerja Pelayanan

3.1.2 Uji Statistik R (Koefiesien Determinasi

Koefisien determinasi (*adjusted* R²) bertujuan untuk mengetahui seberapa besar pengaruh variabel atau *independen*,

yaitu Hydraulic Performance (X1), Reliability Performance (X2), Water Quantity Performance (X3), Water Quality Performance (X4), dan Perilaku Pelanggan (X5) terhadap variabel terikat

b. Predictors: (Constant), Perilaku Pelanggan, Reliability, Hidraulic, Quantity, Quality

dependen, yaitu kinerja pelayanan (Y). nilai koefisien determinasi ditentukan

dengan nilai *adjusted* R *square* sebagaimana dilihat dari tabel 6

Tabel 6 Uji smirnov-kolmogorov

	Model Summary											
				Std. Error of the								
Model	R	$R\ Square$	$Adjusted\ R\ Square$	Estimate								
1	$.495^a$.245	.203	1.48429								

a. Predictors: (Constant), Perilaku Pelanggan, Reliability, Hidraulic, Quantity, Quality

3.1.3 Persepsi Pelanggan

Analisa Dari hasil penyebaran angket kuesioner, didapatkan bahwa menurut responden, tingkat pelayanan PDAM saat ini masih kurang efektif bahkan cenderung tidak efektif. Hal ini dibuktikan dengan jumlah responden

yang menjawab pertanyaan mengenai tingkat pelayanan dengan jawaban kurang efektif sebesar 43,75% serta tidak efektif sebesar 40,63%. Hal ini berbanding dengan hasil lurus pengolahan yang data **EPANET** menunjukkan nilai kinerja jaringan yang belum maksimal

Tabel 7 Respon pelayanan terhadap tingkat pelayanan

No.	Tingkat Pelayanan PDAM	Jumlah Responden	Persentase (%)
1	Tidak Efektif	39	40,63
2	Kurang Efektif	42	437,5
3	Cukup Efektif	13	13,54
4	Efektif	1	1
5	Sangat Efektif	1	1
	TOTAL	96	96

Gambar 2 Persentase respon pelanggan terhadap tingkat pelayanan

3.2 Analisis Kinerja Jaringan

Untuk menguji kinerja jaringan eksisting yang ada, dilakukan simulasi jaringan menggunakan software EPANET 2.0.

Dari hasil peninjauan pada Booster Pump KIMA didapatkan bahwa untuk mencukupi kebutuhan air pelanggan pada wilayah pelayanannya, PDAM menggunakan 2 buah pompa, yaitu pompa 1 dengan kapasitas 173 ltr/det head 36 m dan pompa 2 kapasitas 100 ltr/det head 50 m yang mana waktu peggunaannya juga berbeda. Untuk pompa 1 digunakan sekitar jam 12 malam, sedangkan pompa digunakan sekitar jam 11 pagi. Hal ini disesuaikan dengan elevasi muka air dalam reservoir. Adapun hasil *runing* EPANET untuk kedua pompa ini adalah sebagai berikut:

Table 8 Tabel hasil running EPANET

			Pump 1			Pump 2				Pu	mp 1	Pur	np 2
Nama Jalan	No Pipa	Flow	Velocity	Status	Flow	Velocity	Status	Junc	Elevasi	Head	Pressure	Head	Pressure
		(LPS)	(M/S)	Duttus	(LPS)	(M/S)	Status			m	m	m	m
Pipe JL Makssar 1	Pipe PI62	-0,1	0,02	Open	-0,1	0,02	Open	Junc J9	15	21,75	6,75	8,48	-6,52
Pipe JL Maros 1	Pipe PI63	0,1	0,02	Open	0,1	0,02	Open	Junc J10	16	21,75	5,75	8,48	-7,52
Pipe JL Mkassar 2	Pipe PI64	0,1	0,02	Open	0,1	0,02	Open	June J11	20	21,74	1,74	8,47	-11,53
Pipe JL Maros 3	Pipe PI65	0,1	0,02	Open	0,1	0,02	Open	Junc J12	12	21,74	6,74	8,47	-6,53
Pipe JL Maros 10	Pipe PI46	0,1	0,02	Open	0,1	0,02	Open	June J23	17	21,74	4,74	8,46	-8,54
Pipe JL Pangkep 1	Pipe PI47	0,1	0,02	Open	0,1	0,02	Open	June J25	17	21,73	4,73	8,46	-8,54
Pipe JL Barru 1	Pipe PI52	0,1	0,02	Open	0,1	0,02	Open	Junc J26	16	21,73	5,73	8,45	-7,55
_	Pipe PI71	0,1	0,02	Open	0,1	0,02	Open	Junc J39	15	21,72	6,72	8,45	-6,55
Pipe JL Pinrang	Pipe PI72	0,5	0,11	Open	0,5	0,11	Open	Junc J22	19	21,68	2,68	8,41	-10,59
Raya	Pipe PI73	0,06	0,01	Open	0,06	0,01	Open	Junc J14	17	21,68	4,68	8,41	-8,59
-	Pipe PI74	0,1	0,02	Open	0,1	0,02	Open	June J21	18	21,68	3,68	8,41	-9,59
	Pipe PI66	0,44	0,1	Open	0,44	0,1	Open	June J15	27	21,69	6,69	8,41	-6,59
Pipe JL Mamuju Raya	Pipe PI67	0,18	0,04	Open	0,18	0,04	Open	Junc J20	20	21,68	5,68	21,68	5,68
raya _	Pipe PI100	0,04	0,01	Open	0,04	0,01	Open	Junc J14	17	21,68	4,68	8,41	-8,59
D: W.M. : 1	Pipe PI69	0,16	0,04	Open	0,16	0,04	Open	Junc J18	12	21,68	4,68	8,41	-8,59
Pipe JL Mamuju 1 -	Pipe PI70	0,1	0,02	Open	0,1	0,02	Open	June J17	15	21,68	6,68	8,41	-6,59
Pipe JL Mamuju 4	Pipe PI50	-0,04	0,01	Open	-0,04	0,01	Open	Junc J20	20	21,68	5,68	21,68	5,68
	Pipe PI101	4,2	0,09	Open	4,2	0,09	Open	June J59	16	21,75	5,75	8,48	-7,52
-	Pipe PI102	4	0,09	Open	4	0,09	Open	Junc J60	17	21,74	4,74	8,47	-8,53
-	Pipe PI103	3,8	0,09	Open	3,8	0,09	Open	Juns J8	16	21,74	6,74	8,47	-6,53
-	Pipe PI104	3,26	0,07	Open	3,26	0,07	Open	June J27	17	21,73	4,73	8,46	-8,54
-	Pipe PI105	3,16	0,07	Open	3,16	0,07	Open	Junc J28	17	21,73	4,73	8,46	-8,54
Pipe JL Perumnas	Pipe PI106	3,06	0,07	Open	3,06	0,07	Open	Junc J29	17	21,73	4,73	8,45	-8,55
Sudiang	Pipe PI107	2,46	0,06	Open	2,46	0,06	Open	Junc Perumna s	17	21,72	4,72	8,45	-8,55
-	Pipe PI75	1,21	0,27	Open	1,21	0,27	Open	June J52	17	21,64	4,64	8,36	-8,64
-	Pipe PI76	1,01	0,23	Open	1,01	0,23	Open	June J35	16	21,55	5,55	8,28	-7,72
-	Pipe PI77	0,58	0,13	Open	0,58	0,13	Open	June J36	17	21,52	4,52	8,24	-8,76
-	Pipe PI78	0,1	0,02	Open	0,1	0,02	Open	Junc J42	16	21,51	5,51	8,24	-7,76
	Pipe PI54	0,34	0,08	Open	0,34	0,08	Open	June J32	16	21,63	5,63	8,36	-7,64
Pipe JL Sidrap Raya	Pipe PI61	0,79	0,18	Open	0,79	0,18	Open	June J51	16	21,54	5,54	8,26	-7,74
Pipe JL Soppeng	Pipe PI83	0,74	0,17	Open	0,74	0,17	Open	June J32	16	21,63		8,36	-7,64
Raya	Pipe PI84	0,1	0,02	Open	0,1	0,02	Open	June J31	16	21,63		8,36	-7,64
Pipe JL Pangkep Raya	Pipe PI57	0,2	0,05	Open	0,2	0,05	Open	Junc J41	16	21,63	-	8,36	-7,64
Pipe JL Majene Raya	Pipe PI87	0,18	0,04	Open	0,18	0,04	Open	Junc J36	17	21,52	4,52	8,24	-8,76
- 3		-		•			•				-	-	

			Pump 1			Pump 2				Pu	mp 1	Pump 2	
Nama Jalan	No Pipa	Flow	Velocity	Status	Flow	Velocity	Status	Junc	Elevasi	Head	Pressure	Head	Pressure
<u>-</u>		(LPS)	(M/S)		(LPS)	(M/S)				m	m	m	m
	Pipe PI88	0,2	0,05	Open	0,2	0,05	Open	June J38	18	21,51	3,51	8,23	-9,77
Pipe JL Bone Raya	Pipe PI79	0,44	0,1	Open	0,44	0,1	Open	June J34	16	21,54	5,54	8,26	-7,74
Fipe JL Boile Raya	Pipe PI80	-0,11	0,03	Open	-0,11	0,03	Open	June J51	16	21,54	5,54	8,26	-7,74
Pipe JL Sengkang	Pipe PI81	0,57	0,13	Open	0,57	0,13	Open	June J57	16	21,51	5,51	8,24	-7,76
Raya	Pipe PI82	0,1	0,02	Open	0,1	0,02	Open	June J43	15	21,51	6,51	8,23	-6,77
Pipe JL Gowa Raya	Pipe PI90	0,8	0,18	Open	0,8	0,18	Open	Junc J48	17	21,4	4,4	8,13	-8,87
Pipe JL Gowa Raya	Pipe PI91	0,47	0,11	Open	0,47	0,11	Open	June J58	16	21,45	5,45	8,18	-7,82
Pipe JL Sudiang	Pipe PI85	0,45	0,1	Open	0,45	0,1	Open	June J37	16	21,51	5,51	8,24	-7,76
Raya	Pipe PI86	0,53	0,12	Open	0,53	0,12	Open	June J50	16	21,48	5,48	8,21	-7,79
	Pipe PI89	0,43	0,1	Open	0,43	0,1	Open	June J58	16	21,45	5,45	8,18	-7,82
_	Pipe PI90	0,8	0,18	Open	0,8	0,18	Open	June J48	17	21,4	4,4	8,13	-8,87
Pipe JL Bulukumba Raya _	Pipe PI94	0,6	0,14	Open	0,6	0,14	Open	June J46	16	21,34	5,34	8,07	-7,93
1111/11	Pipe PI96	0,4	0,09	Open	0,4	0,09	Open	June J53	15	21,33	6,33	8,06	-6,94
_	Pipe PI98	0,2	0,05	Open	0,2	0,05	Open	June J44	15	21,32	6,32	8,05	-6,95
Pipe JL Jeneponto Raya	Pipe PI93	0,1	0,02	Open	0,1	0,02	Open	Junc J49	16	21,4	5,4	8,13	-7,87
Pipe JL Jeneponto 8	Pipe PI95	0,1	0,02	Open	0,1	0,02	Open	June J47	16	21,34	5,34	8,07	-7,93
Pipe JL Bulukumba 7	Pipe PI97	0,1	0,02	Open	0,1	0,02	Open	Junc J54	15	21,33	6,33	8,05	-6,95
Pipe JL Selayar Raya	Pipe PI99	0,1	0,02	Open	0,1	0,02	Open	June J45	15	21,32	6,32	8,05	-6,95

Berdasarkan hasil runingan EPANET didapatkan bahwa *pressure* atau tekanan air pada saat menggunakan pompa 1, dari 45 junction yg ada di Perumas hanya 30 junc yang menghasilkan output positif atau sekitar 66% dari total junc, dengan nilai pressure di atas 5 m sesuai dengan kriteria perencanaan dan 15 junction atau sekitar 33% yg menghasilkan output negative. Sedangkan pada saat pompa 2 digunakan, hanya junction Kima 10 dan junction Daya menunjukkan pressure atau tekanan air yang positif. Hal ini manandakan bahwa pada siang hari, saat penggunaan pompa 2, kekuatan pompa hanya mampu menjangkau wilayah KIMA 10 dan Daya, sedangkan untuk wilayah perumnas sudiang sama sekali tidak mendapatkan air.

4. Penutup

4.1 Kesimpulan

Berdasarkan hasil penelitian yang dilakukan, maka diperoleh kesimpulan sebagai berikut:

 Hasil Persepsi pelanggan di Perumnas Sudiang Kecamatan Biringkanaya Kota Makassar terhadap kinerja pelayanan PDAM yaitu kurang efektif karena waktu pengalirannya yang

- tidak menentu serta tekanan air yang tidak menentu pula terbukti dari jawaban responden yang memilih jawaban kurang efektif sebesar 43,75% dan tidak efektif sebesar 40,63%.
- 2) Besarnya kinerja sistem jaringan distribusi air bersih PDAM di Perumnas Sudiiang Kecamatan Biringkanaya sebesar 66% pada malam hari yang artinya kinerja jaringan masi kurang bagus sedangkan pada siang hari air sama sekali tdk megalir di wilayah Perumnas Sudiang yang artinya kinerja jaringan jelek dan perlu perhatian.

4.2 Saran

Adapun saran dari penelitian tersebut vaitu:

- Melakukan pembangunan Instalasi Pengolahan Air di wilayah Kecamatan Biringkanaya untuk menaungi zona pelayanan di daerah Tamalanrea Biringkanaya.
- Memprotiaskan jam puncak pemakaian air sebagai acuan untuk menjalankan pompa dengan kapasitas besar.

Daftar Pustaka

- Bakri, B. (2011). Optimasi Jaringan Pipa Distribusi Air Bersih (Studi Kasus PDAM Makassar).
- Cholil, M. (1998). Analisis Penurunan Muka Airtanah di Kotamadya Surakarta.
- Herdiyani, P. (2015). Penilaian Kinerja di Perusahaan Daerah Air Minum (PDAM) Kabupaten Pasuruan dengan Menggunakan Perspektif Finansial dan Non Finansial. Malang: Universitas Islam Negeri Maulana Ibrahim.
- Musa, R., & Amin, A. (2019). Tinjauan Jaringan Distribusi Air Bersih pada Perumahan BTP Makassar dengan Menggunakan Software Epanet. *Jurnal Teknik Sipil MACCA*, 4(1), 81–91.
- Paranoan, A. (2018). Analisa Kinerja Jaringan Sistem Distribusi Air Water Distribution System Performance. http://digilib.unhas.ac.id/uploaded_ files/temporary
- Sistyanto, N. A., & Hadi, M. P. (2012). Penggunaan Air Domestik dan Willingness To Pay Air Bersih PDAM di Kecamatan Temanggung Kabupaten Temanggung. *Jurnal Bumi Indonesia*, 1(3).