

Pengaruh Dedak Padi Sebagai Bahan Tambah Terhadap Deformasi AC-WC

Muh. Ismail Syafar¹, Shahrizal Awali M. Taufik², Winarno Arifin³, Asma Massara⁴, Salim⁵

12.3.4.5)Program Studi Teknik Sipil Fakultas Teknik Universitas Muslim Indonesia
Jl. Urip Sumoharjo Km 05 Panaikang, Kec. Panakkukang, Kota Makassar, Sulawesi Selatan 90231
Email: 1)ismailsyafar@engineer.com; 2)shahrizal.a.m.t@gmail.com; 3)winarno.arifin@umi.ac.id;
4)asma.massara@umi.ac.id; salim.salim@umi.ac.id

ABSTRAK

Serat selulosa merupakan salah satu alternatif jenis bahan tambah yang bisa digunakan dalam campuran aspal beton. Contoh serat selulosa yang bersifat alami yang lebih dikenal sebagai bahan baku dalam industri pakan, saat ini sudah sering dicobakan dalam pengujian campuran aspal beton yaitu dedak padi. Tujuan percobaan ini untuk menganalisis perilaku *rutting* terhadap dedak padi dengan variasi persentase kadar pada campuran beton aspal (AC-WC) melalui hasil pengamatan dan untuk menganalisis ketahanan campuran terhadap *rutting* akibat pengaruh penambahan kadar persentase dedak padi pada campuran beton aspal (AC-WC). Penelitian eksperimental dilakukan dengan pembuatan benda uji masing-masing tiga buah briket untuk setiap kadar aspal untuk memperoleh kadar aspal optimum. Berdasarkan kadar aspal optimum tersebut, ditentukan perencanaan campuran untuk bahan tambah pembuatan benda uji wheel tracking, kadar dedak padi ditambahkan dengan melakukan pendekatan studi literatur, adapun variasi bahan tambah yang digunakan ialah 2%, 4%, 6%, 8% dan 10%. Berdasarkan pengujian Wheel Tracking nilai deformasi terendah yaitu pada kadar dedak padi 2% dengan nilai 1,763 mm, dan layak digunakan untuk mengurangi deformasi dan *rutting* pada perkerasan lentur.

Kata Kunci: Dedak padi, serat selulosa, deformasi, AC-WC

ABSTRACT

Cellulose fiber is an alternative type of additive that can be used in asphalt-concrete mixtures. One example of natural cellulose fiber, which is better known as a raw material in the feed industry, has now often been tried in testing asphalt-concrete mixtures, namely rice bran. The purpose of this experiment is to analyze the rutting behavior of rice bran with variations in the percentage of content in the asphalt concrete mixture (AC-WC) through observations and to analyze the resistance of the mixture to rutting due to the effect of increasing the percentage of rice bran in the asphalt concrete mixture (AC-WC). Experimental research was carried out by making three briquettes for each asphalt content to obtain the optimum asphalt content. Based on the optimum asphalt content, it was determined the mix planning for the added material for making wheel tracking specimens, the rice bran content was added by conducting a literature study approach, while the variations of the additives used were 2%, 4%, 6%, 8% and 10%. Based on the Wheel Tracking test, the lowest deformation value is at 2% rice bran content with a value of 1.763 mm, and is feasible to use to reduce deformation and rutting in flexible pavements.

Keywords: Rice bran, cellulose fiber, deformation, AC-WC

1. Pendahuluan

1.1 Latar Belakang

Perkerasan jalan raya saat ini memiliki tuntutan tinggi untuk mampu memikul beban kendaraan dengan volume lalu lintas yang terus bertambah baik untuk jalan perkotaan maupun jalan antar kota (Widiastuti, 2018). Dengan beban lalu lintas yang semakin tinggi, kerusakan jalan sebelum umur layan khususnya menjadi sesuatu yang sulit dihindari (Syafriana et al., 2015).

Perkerasan lentur dominan yang digunakan pada jalan arteri primer rentan mengalami berbagai jenis kerusakan diantaranya deformasi. Deformasi merupakan kondisi berubahnya kondisi permukaan jalan dari profil awal saat pembangunan yang ditandai dengan amblas, bergelombang, sungkur, alur, benjol, dan mengembang (Djalante, 2010). Untuk mengantisipasi kejadian tersebut, beberapa penelitian terdahulu mencoba mencari material alternatif baik sebagai subtitusi maupun bahan tambah dalam campuran aspal beton.

Serat selulosa merupakan salah satu tipe bahan tambah yang banyak dicobakan dan terbukti mampu meningkatkan kinerja campuran aspal beton (Tahir, 2011). Contoh material aditif yang sering digunakan adalah road cell 50, namun ketersediaan bahan ini cukup jarang dan tersedia dengan harga mahal. Salah satu contoh serat selulosa yang bersifat alami yang lebih dikenal sebagai bahan baku dalam industri pakan, saat ini sudah pengujian dicobakan dalam sering campuran aspal beton yaitu dedak padi. Dedak padi, atau juga dikenal sebagai cellulosa rice fiber, merupakan contoh serat selulosa alamiah (Sulistia, 2017). Dengan keterbatasan bahan aditif road cell 50, pemanfaatan serat selulosa alami seperti dedak padi dapat dicobakan pada campuran aspal beton. Oleh karena itu, penelitian ini mencoba menambahkan

dedak padi yang cukup mudah dan murah untuk diperoleh dan menguji pengaruhnya pada campuran aspal.

1.2 Rumusan Masalah

Pokok permasalahan dalam penelitian ini dirumuskan sebagai berikut:

- Bagaimanakah prilaku rutting campuran AC-WC dengan beberapa variasi persentase kadar dedak padi?
- 2) Bagaimanakah ketahanan campuran beton aspal terhadap *rutting* akibat pengaruh penambahan kadar persentase dedak padi?

1.2 Maksud dan Tujuan

Dalam penelitian ini akan dianalisis pengaruh penambahan serat selulosa alami berupa dedak padi terhadap deformasi campuran aspal beton (AC-WC). Penelitian ini bertujuan untuk:

- 1) Untuk menganalisis prilaku rutting campuran AC-WC dengan beberapa variasi persentase kadar dedak padi.
- Untuk menganalisis ketahanan campuran beton aspal terhadap rutting akibat pengaruh penambahan kadar persentase dedak padi

2. Metode Penelitian

2.1 Tinjauan Umum

Penelitian eksperimental dilakukan di Laboratorium Jalan Raya dan Transportasi Fakultas Teknik Program Studi Teknik Sipil Universitas Muslim Indonesia.

2.2 Bahan Penelitian

- a. Aspal
 - Menggunakan aspal minyak penetrasi 60/70 keluaran Pertamina.
- b. Agregat
 - Agregat kasar dan halus diperoleh dari proses pemecahan batu alam dari daerah Bili-bili kab. Gowa.
- c. Bahan Tambah Dedak padi sebagai bahan tambah yang diperoleh dari pasar Daya:

Gambar 1. Dedak Padi

2.3 Alat Penelitian

Meliputi alat pengujian properti aspal, agrgat kasar, dan agragat halus, alat pengujian karakteristik campuran aspal (marshall test), dan alat pengujian deformasi (Wheel Tracking Test).

2.4 Tahapan Penelitian

1) Persiapan dan Pengujian Bahan

Setiap material penyusun campuran dipersiapkan dan diuji untuk mengetahui kelayakan penggunaan material tersebut sebagai bahan campuran aspal beton.

2) Rancangan Benda Uji

Gradasi agregat campuran yang dipilih, yaitu gradasi campuran yang lolos saringan No. IV (campuran laston AC-WC). Penentuan kadar aspal optimum (KAO) dilakukan dengan pengujian vasriasi kadar aspal pada interval 4,5% -6,5% per kenaikan 0,5%. Sampel berupa tiga briket per kadar aspal, artinya dengan total lima variasi kadar aspal yang diuji terdapat total 15 briket yang diuji untuk memperoleh nilai KAO. Setelah didapatkan KAO ditentukan perencanaan campuran untuk bahan tambah pembuatan benda uji whell tracking, kadar dedak padi ditambahkan dengan melakukan pendekatan studi literatur, adapun variasi bahan tambah yang digunakan ialah 2%, 4%, 6%, 8% dan 10%.

3) Pembuatan Benda Uji

Pada pengujian Whell Tracking ada beberapa tahap yang dilakukan yaitu:

- a) Dimulai dengan persiapan alat dan bahan yang dilanjutkan dengan penentuan persentase tiap fraksi agar proporsi campuran yang lebih tepat dapat diperoleh.
- b) Campuran agregat yang telah ditimbang, dituangkan kedalam wajan lalu dipanaskan sampai mencapai suhu ± 130°C. Kemudian dimasukkan dedak padi, lalu aspal dipanaskan sampai mencapai suhu pencampuran, setelah agregat mencapai suhu yang telah dipanaskan kemudian dituangkan kedalam wajan yang berisi aspal yang telah ditimbang berdasarkan dengan persentase berat total agregat.
- c) Setelah agregat dituangkan ke dalam aspal, campuran kemudian diaduk hingga rata sampai mencapai suhu ±150°C. Selanjutnya campuran dimasukkan kedalam cetakan berukuran 30x30x5.
- d) Campuran dipadatkan sebanyak 150 tumbukan. Selanjutnya benda uji di dinginkan pada suhu ruang, selanjutnya dikeluarkan dari cetakan dan dibiarkan lagi pada suhu ruang.
- e) Campuran dimasukkan kedalam oven selama tujuh jam dengan suhu 60°C. setelah dioven mencapai waktunya dikeluarkan dan campuran diuji dengan alat *Whell Tracking* untuk melihat deformasi yang terjadi pada campuran.

4) Pengujian Benda Uji

Pengujian tahap akhir yaitu pengujian dengan alat uji *Wheeel Tracking*. Dari hasil pengujian *Wheel Tracking* diperoleh nilai penurunan deformasi, Total Deformasi (D0), Stabilitas Dinamis (DS), Laju Deformasi (RD).

5) Pengolahan Data dan Analisis

Nilai total deformasi, stabilitas dinamis, dan laju deformasi diperoleh dengan proses pengolahan dan analisis data sehingga dapat diperoleh kesimpulan dan saran.

3. Hasil dan Pembahasan

3.1 Pemeriksaan Material

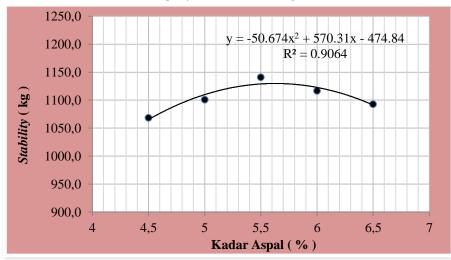
Pemeriksaan properti bahan bertujuan untuk mengecek apakah material yang disiapkan layak atau tidak berdasarkan spesifikasi yang ada

Tabel 1 Rekapitulasi Pemeriksaan Material

No	Jenis Pemeriksaam	Split		Abu	Aspal	Spesifikasi	
	Jenis i emeriksaam	1 - 2	0,5-1	batu	rispai	Брезніказі	
	Formula	15%	29%	56%			
	Ayakan (%lolos)						
	3/4"	100	100	100		100	
	1/2"	66.81	100	100		90-100	
	3/8"	16.97	81.32	100		77-90	
1	No. 4	0.23	22.05	100		53-69	
	No. 8	0	2.97	75.90		33-53	
	No. 16	0	0	55.30		21-40	
	No. 30	0	0	41.10		14-30	
	No. 50	0	0	24.00		9-22	
	No. 100	0	0	14.60		6-15	
	No. 200	0	0	7.60		4-9	
	Berat Jenis Agregat					_	
	a. Bulk	2.481	2.48	2.592		2.4 - 2.9	
2	b. SSD	2.600	2.660	2.740		2.4 - 2.9	
	c. Apparent	2.599	2.605	2.525		2.4 - 2.9	
	d. Penyerapan	1.831	1.907	2.670		≤ 3 %	
	Berat Isi						
3	a. Gembur (gr/cm ³)	1.403	1.442	1.465		1,4 - 1,9	
	b. Padat (gr/cm ³)	1.443	1.470	1.582		1,4-1,9	
	Sand Equipalent						
4	a. Sebelum pembebanan (%)	-	-	75.28		≥ 60 %	
	b. Setelah pembebanan (%)	-	-	71.13			
5	Soundness Test (%)	5.9	6.3	6.0		≤ 12 %	
6	Abration Test (%)	24.40	26.80	-		≤ 40	
7	Kelekatan Agregat Terhadap Aspal				97	≥ 95 %	
	(%)						
8	Penetrasi 25°C;100 gr; 5 detik; 0,1 mm				60	60 – 79	
9	Berat Jenis Aspal				1.025	1.0 – 1.16	
10	Titik Lembek Aspal (°C)				53.25	≥ 48	
11					220°	. 220	
	Titik Nyala dan Titik Bakar Aspal (°C)				dan	≥ 220	
					295°		
12	Daktalitas, 25 °C; cm				152.50	≥ 100	

3.2 Analisis Pengujian *Marshall* Hasil Pengujian Marshall Test Untuk Penentuan Kadar Aspal Optimum (KAO)

untuk lima kadar aspal yang diuji untuk memperoleh kadar aspal optimum dalam campuran.

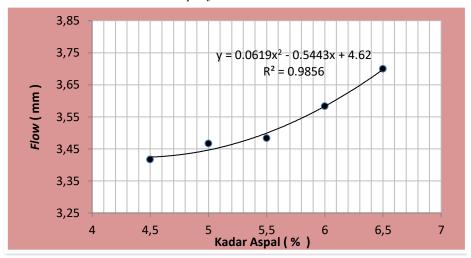

Berikut adalah karakteristik Marshall

Tabel 2 Rekapitulasi pengujian marshall campuran AC- WC untuk lima variasi kadar aspal

Sifat-sifat campuran		C					
Kadar Aspal; %	4.5	5 5.5		6	6.5	Spesifikasi	
Stabilitas; kg	1068.16	1100.42	1140.73	1116.55	1092.36	800-1800 kg	
Flow; mm	3.42	3.47	3.48	3.58	3.70	Min 2 mm	
VIM; %	6.368	5.449	4.734	4.230	4.034	$\geq 3\%$	
VFA; %	61.279	67.319	72.223	76.571	78.849	$\geq 63\%$	
VMA; %	16.438	16.638	17.021	17.473	18.301	$\geq 15\%$	
Density	2.232	2.238	2.240	2.240	2.229	$\geq 2.2~{\rm kg/mm^3}$	
Marshall Quotient; kg/mm	312.837	317.66	327.807	311.571	295.3	Min 180	

3.3 Hubungan Kadar Aspal terhadap Stabilitas

Spesifikasi 800 – 1800 kg

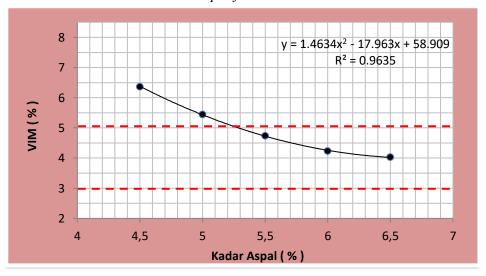

Gambar 1. Grafik hubungan antara kadar aspal dan stabilitas

Gambar 1 menunjukkan peningkatan nilai stabilitas pada campuran dari kadar aspal 4,5% sampai dengan 5,5%, akan tetapi pada saat kadar aspal 5,5% hingga kadar aspal 6,5% terjadi penurunan. Hal ini disebabkan karena rongga yang kecil berpotensi menyebabkan pelelehan plastis setelah dibebani lalu lintas.

Artinya semakin besar nilai kadar aspal, nilai stabilitas meningkat hingga kadar aspal optimum. Namun setelah melampaui nilai optimum, stabilitas akan menurun sebab campuran mengalami kegemukan atau *bleeding* mengingat selimut aspal semakin tebal yang menghalangi sifat saling kunci (interlocking) antar agregat.

3.4 Hubungan Kadar Aspal terhadap Flow

Spesifikasi 2 – 4 mm

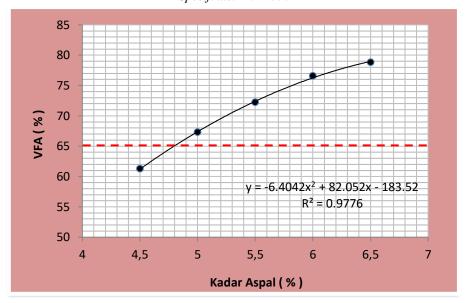

Gambar 2. Grafik Hubungan antara Kadar Aspal terhadap flow

Gambar 2 memperlihatkan nilai *flow* dari kadar aspal 4,5% yang meningkat hingga kadar aspal 6,5%. Artinya semakin tinggi kadar aspal maka semakin besar pula

kelelehan yang terjadi pada campuran. Besarnya nilai *flow* pada campuran menunjukkan bahwa campuran tersebut akan mudah terjadi perubahan bentuk.

3.5 Hubungan Kadar Aspal terhadap Void In Mixture (VIM)

Spesifikasi 3 – 5%

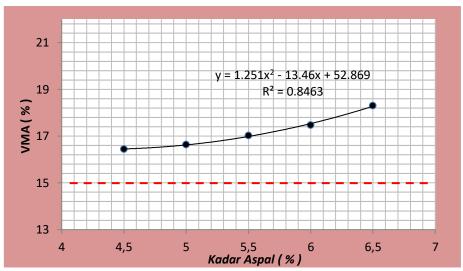


Gambar 3. Grafik Hubungan antara Kadar Aspal terhadap flow

Gambar 3 menunjukkan bahwa nilai VIM untuk aspal sebanyak 4,5% dari berat total campuran menurun secara konsisten hingga kadar aspal 6,5%. Akan tetapi, ketika persentase 4,5% hingga

kadar aspal 5% nilai VIM mengalami peningkatan, yang artinya tidak memenuhi spesifikasi.

3.6 Hubungan Kadar Aspal terhadap *Void Fillet with Asphalt* (VFA) *Spesifikasi Min 65%*

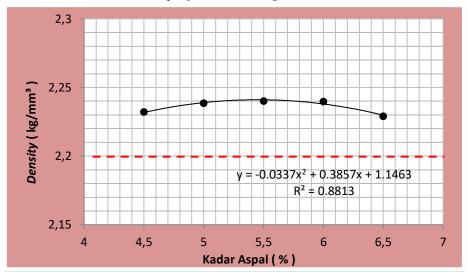


Gambar 4. Grafik Hubungan antara Kadar Aspal terhadap VFA

Gambar 4 memperlihatkan persentase pori pada campuran yang terisi aspal per variasi kadar aspal, dimana nilai VFA naik secara konsisten mulai dari kadar 4,5% hingga 6,5%. Untuk kadar aspal

4,5%, nilai VFA tidak memenuhi spesifikasi, akan tetapi pada saat kadar aspal 5% hingga 6,5% nilai VFA meningkat secara konsisten sehingga memenuhi spesifikasi.

3.7 Hubungan Kadar Aspal terhadap Void In Mineral Aggregates (VMA) Spesifikasi Min 15%

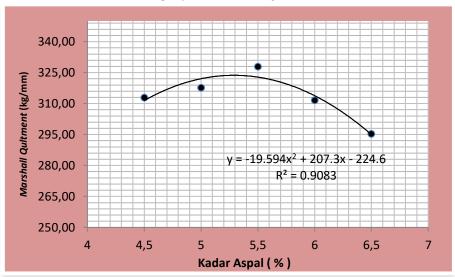


Gambar 5. Grafik hubungan antara kadar aspal terhadap VMA

Gambar 5 memperlihatkan bahwa seluruh variasi kadar aspal yang diuji memenuhi nilai spesifikasi VMA yaitu minimal 15%,. Mulai dari kadar aspal 4,5% nilai VMA meningkat hingga kadar aspal 6,5%. Artinya semakin tinggi kadar aspal dalam campuran, semakin tinggi pula nilai VMA yang dihasilkan.

3.8 Hubungan Kadar Aspal terhadap Berat Volume (*Density*)

Spesifikasi Min 2,2 kg/mm³


Gambar 6. Grafik hubungan antara kadar aspal terhadap Density

Gambar 6 menunjukkan nilai *density* yang meningkat untuk kadar aspal 4,5% sampai dengan 5,5%, kemudian menurun

hingga kadar aspal 6,5%. Hasil analisis yang diperoleh memenuhi standar Bina Marga.

3.9 Hubungan Kadar Aspal terhadap Marshall Quotient

Spesifikasi Min 250 kg/mm

Gambar 7. Grafik Hubungan antara Kadar Aspal terhadap MQ

Gambar 7 memperlihatkan bahwa nilai MQ meningkat mulai dari kadar aspal 4,5% hingga 5,5%, lalu menurun di kadar aspal 6,0% hingga kadar 6,5%. Namun secara keseluruhan nilai MQ memenuhi spesifikasi Bina Marga. Nilai MQ menggambarkan tingkat fleksibilitas campuran. Semakin tinggi nilai MQ

maka campuran akan semakin kaku (mudah retak). Sebaliknya, semakin kecil nilai MQ maka campuran akan semakin lentur namun jika campuran terlalu lentur cenderung kurang stabil.

Binder Content (%) 4,5 5 5,5 6 6,5 Stability (kg) Flow (mm) VIM (%) VMA (%) VFA (%) MQ (kg/mm) Density (cm²) KAO (5.90%)

3.10 Hubungan Kadar aspal dengan Karakteristik Campuran Aspal

Gambar 8. Grafik Penentuan Nilai KAO

Gambar 8 adalah *barchart* penentun KAO dimana nilai tengah adalah nilai KAO sebesar 5,90%.

3.11 Hasil dan Analisis Pengujian Wheel Tracking

Kinerja ketahanan deformasi campuran dinyatakan dalam tiga besaran yaitu kedalaman alur atau deformasi dalam satuan mm setelah dilalui sejumlah lintasan, laju Deformasi (*Rate of Deformation*) dalam satuan mm/menit, dan Stabilitas Dinamis /*Dynamic*

Stability (DS) dalam lintasan/mm, yang dapat dihitung dengan persamaan:

$$DS = 21 \times \frac{(60 - 45)}{(5.75 - 3.50)}$$

$$DS = 21 \times \frac{(15)}{(2.25)}$$

$$DS = 140$$

$$RD = \frac{(5.75 - 3.50)}{(60 - 45)}$$

$$RD = 0.1500$$
(1)

Hasil Pengujian *Wheel Tracking* ditunjukkan pada Tabel 3 dibawah ini:

Tabel 3 Hasil Pengujian dengan Wheel Tracking Machine

M : 4	Lintasan -	Deformasi (mm)							
Menit		0%	2%	4%	6%	8%	10%		
0	0	0	0	0	0	0	0		
1	21	0.57	0.32	0.44	0.45	0.96	0.98		
5	105	1.34	0.84	1.15	1.24	1.78	2.96		
10	210	2.85	1.26	1.83	2.24	3.98	4.25		
15	315	3.36	1.54	2.19	3.41	4.48	5.15		
30	630	4.74	2.22	3.16	4.1	5.32	7.11		
45	945	6.23	2.79	3.97	5.46	6.54	9.08		
60	1260	8.18	3.37	4.95	6.8	8.22	11.15		
Total Deformasi (D0) (mm)		3.896	1.763	2,527	3,386	4,469	5.811		
Stabilitas Dinamis (DS) (lintasan/mm)		323,08	1086,2	642,86	470,15	375	304,35		
Laju Deformasi (RD) (mm/menit)		0.130	0.039	0.065	0,089	0.112	0.138		

Berdasarkan Tabel 3 terjadi perbedaan nilai yang dihasilkan setelah adanya penambahan kadar dedak padi 0%, 2%, 4%, 6%, 8% dan 10%. Pada tabel di atas campuran kadar dedak padi 2% memiliki total deformasi terendah dari kadar yang lainnya, kemudian nilai stabilitas dinamis tertinggi juga terdapat pada campuran dengan kadar dedak padi 2%, dan nilai laju deformasi terendah dihasilkan juga oleh campuran yang ditambahkan kadar dedak padi 2%. Jadi dari tabel di atas diketahui campuran aspal dengan penambahan dedak padi 2% lebih baik dari pada campuran dengan kadar dedak padi 0% (normal).

4. Penutup

4.1 Kesimpulan

Berikut adalah hal yang dapat disimpulkan dalam penelitian ini:

- 1. Perilaku rutting yang memiliki nilai terbaik adalah pada kadar dedak padi 2%, karena menghasilkan nilai deformasi terendah yaitu 1,763 mm, stabilitas dinamis terbesar vaitu 1086,2 lintasan/mm, dan nilai kecepatan deformasi terkecil vaitu 0.039 mm/menit. Jadi dapat disimpulkan bahwa perilaku rutting pada campuran AC-WC dengan penambahan kadar dedak padi 2% layak digunakan untuk mengurangi deformasi dan rutting pada perkerasan lentur.
- 2. Dari hasil analisis pada pengujian wheel tracking didapatkan data bahwa dengan penggunaan jumlah kadar dedak padi yang semakin banyak sangat berpengaruh pada ketahanan campuran terhadap.

4.2 Saran

1. Pengembangan penelitian diharapkan dapat dilakukan dengan

- tetap menggunakan dedak padi namun untuk pengujian lainnya.
- 2. Diperlukan penelitian lebih lanjut terhadap model pemadatan yang tepat guna meningkatkan kinerja dan fungsi dedak padi pada campuran AC-WC.

Daftar Pustaka

- Djalante, S. (2010). Evaluasi Kondisi dan Kerusakan Perkerasan Lentur di Beberapa Ruas Jalan Kota Kendari. *Mektek*, 8(1), 1–14.
- Sulistia, A. (2017). Pengembangan Campuran Split Mastic Asphalt (SMA) Menggunakan Bahan Reclaimed Asphalt Pavement (RAP) dengan Serat Selulosa Alami Dedak Padi. Universitas Muhammadiyah Surkarta.
- Syafriana, Saleh, M. S., & Anggraini, R. (2015). Evaluasi Umur Layan Jalan dengan Memperhitungkan Beban Berlebih di Ruas Jalan Lintas Timur Provinsi Aceh. *Jurnal Transportasi*, 15(2), 115–124.
- Tahir, A. (2011). Kinerja Campuran Split Mastic Asphalt (SMA) yang Menggunakan Serat Selulosa Alami Dedak Padi. *Rekayasa Dan Manajemen Transportasi*, 1(1), 27– 41.
- Widiastuti, A. P. (2018). Analisis
 Perbandingan Desain Struktur
 Perkerasan Lentur Menggunakan
 Metode Empiris Dan Metode
 Mekanistik Empiris Pada Ruas
 Jalan Legundi-Kanigoro- Planjan.
 Universitas Islam Indonesia.